Numerical convergence rate for a diffusive limit of hyperbolic systems: p-system with damping
The SMAI Journal of computational mathematics, Tome 2 (2016), pp. 99-119

Voir la notice de l'article provenant de la source Numdam

This paper deals with diffusive limit of the p-system with damping and its approximation by an Asymptotic Preserving (AP) Finite Volume scheme. Provided the system is endowed with an entropy-entropy flux pair, we give the convergence rate of classical solutions of the p-system with damping towards the smooth solutions of the porous media equation using a relative entropy method. Adopting a semi-discrete scheme, we establish that the convergence rate is preserved by the approximated solutions. Several numerical experiments illustrate the relevance of this result.

Publié le :
DOI : 10.5802/smai-jcm.10
Classification : 65M08, 65M12
Keywords: Asymptotic Preserving scheme, numerical convergence rate, relative entropy

Berthon, Christophe 1 ; Bessemoulin-Chatard, Marianne 1 ; Mathis, Hélène 1

1 Université de Nantes - Laboratoire de Mathématiques Jean Leray, CNRS UMR 6629 - 2 rue de la Houssinière, BP 92208 - 44322 Nantes, France
@article{SMAI-JCM_2016__2__99_0,
     author = {Berthon, Christophe and Bessemoulin-Chatard, Marianne and Mathis, H\'el\`ene},
     title = {Numerical convergence rate for a diffusive limit of hyperbolic systems: $p$-system with damping},
     journal = {The SMAI Journal of computational mathematics},
     pages = {99--119},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {2},
     year = {2016},
     doi = {10.5802/smai-jcm.10},
     mrnumber = {3633546},
     zbl = {1416.65289},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/smai-jcm.10/}
}
TY  - JOUR
AU  - Berthon, Christophe
AU  - Bessemoulin-Chatard, Marianne
AU  - Mathis, Hélène
TI  - Numerical convergence rate for a diffusive limit of hyperbolic systems: $p$-system with damping
JO  - The SMAI Journal of computational mathematics
PY  - 2016
SP  - 99
EP  - 119
VL  - 2
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - http://geodesic.mathdoc.fr/articles/10.5802/smai-jcm.10/
DO  - 10.5802/smai-jcm.10
LA  - en
ID  - SMAI-JCM_2016__2__99_0
ER  - 
%0 Journal Article
%A Berthon, Christophe
%A Bessemoulin-Chatard, Marianne
%A Mathis, Hélène
%T Numerical convergence rate for a diffusive limit of hyperbolic systems: $p$-system with damping
%J The SMAI Journal of computational mathematics
%D 2016
%P 99-119
%V 2
%I Société de Mathématiques Appliquées et Industrielles
%U http://geodesic.mathdoc.fr/articles/10.5802/smai-jcm.10/
%R 10.5802/smai-jcm.10
%G en
%F SMAI-JCM_2016__2__99_0
Berthon, Christophe; Bessemoulin-Chatard, Marianne; Mathis, Hélène. Numerical convergence rate for a diffusive limit of hyperbolic systems: $p$-system with damping. The SMAI Journal of computational mathematics, Tome 2 (2016), pp. 99-119. doi: 10.5802/smai-jcm.10

Cité par Sources :