Domain decomposition algorithms for the two dimensional nonlinear Schrödinger equation and simulation of Bose–Einstein condensates
The SMAI Journal of computational mathematics, Tome 2 (2016), pp. 277-300

Voir la notice de l'article provenant de la source Numdam

In this paper, we apply the optimized Schwarz method to the two dimensional nonlinear Schrödinger equation and extend this method to the simulation of Bose–Einstein condensates (Gross– Pitaevskii equation). We propose an extended version of the Schwartz method by introducing a preconditioned algorithm. The two algorithms are studied numerically. The experiments show that the preconditioned algorithm improves the convergence rate and reduces the computation time. In addition, the classical Robin condition and a newly constructed absorbing condition are used as transmission conditions.

Publié le :
DOI : 10.5802/smai-jcm.17
Classification : 35Q55, 65M55, 65Y05, 65M60
Keywords: nonlinear Schrödinger equation, rotating Bose–Einstein condensate, optimized Schwarz method, preconditioned algorithm, parallel algorithm

Besse, Christophe 1 ; Xing, Feng 2

1 Institut de Mathématiques de Toulouse UMR5219, Université de Toulouse; CNRS, UPS IMT, F-31062 Toulouse Cedex 9, France
2 Laboratoire de Mathématiques J.A. Dieudonné, UMR 7351 CNRS, University Nice Sophia Antipolis, team COFFEE, INRIA Sophia Antipolis Méditerranée, Parc Valrose 06108 Nice Cedex 02, France, and BRGM Orl�ans France
@article{SMAI-JCM_2016__2__277_0,
     author = {Besse, Christophe and Xing, Feng},
     title = {Domain decomposition algorithms for the two dimensional nonlinear {Schr\"odinger} equation and simulation of {Bose{\textendash}Einstein} condensates},
     journal = {The SMAI Journal of computational mathematics},
     pages = {277--300},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {2},
     year = {2016},
     doi = {10.5802/smai-jcm.17},
     zbl = {1416.65328},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/smai-jcm.17/}
}
TY  - JOUR
AU  - Besse, Christophe
AU  - Xing, Feng
TI  - Domain decomposition algorithms for the two dimensional nonlinear Schrödinger equation and simulation of Bose–Einstein condensates
JO  - The SMAI Journal of computational mathematics
PY  - 2016
SP  - 277
EP  - 300
VL  - 2
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - http://geodesic.mathdoc.fr/articles/10.5802/smai-jcm.17/
DO  - 10.5802/smai-jcm.17
LA  - en
ID  - SMAI-JCM_2016__2__277_0
ER  - 
%0 Journal Article
%A Besse, Christophe
%A Xing, Feng
%T Domain decomposition algorithms for the two dimensional nonlinear Schrödinger equation and simulation of Bose–Einstein condensates
%J The SMAI Journal of computational mathematics
%D 2016
%P 277-300
%V 2
%I Société de Mathématiques Appliquées et Industrielles
%U http://geodesic.mathdoc.fr/articles/10.5802/smai-jcm.17/
%R 10.5802/smai-jcm.17
%G en
%F SMAI-JCM_2016__2__277_0
Besse, Christophe; Xing, Feng. Domain decomposition algorithms for the two dimensional nonlinear Schrödinger equation and simulation of Bose–Einstein condensates. The SMAI Journal of computational mathematics, Tome 2 (2016), pp. 277-300. doi: 10.5802/smai-jcm.17

Cité par Sources :