Flip procedure in geometric approximation of multiple-component shapes – Application to multiple-inclusion detection
The SMAI Journal of computational mathematics, Tome 2 (2016), pp. 255-276

Voir la notice de l'article provenant de la source Numdam

We are interested in geometric approximation by parameterization of two-dimensional multiple-component shapes, in particular when the number of components is a priori unknown. Starting a standard method based on successive shape deformations with a one-component initial shape in order to approximate a multiple-component target shape usually leads the deformation flow to make the boundary evolve until it surrounds all the components of the target shape. This classical phenomenon tends to create double points on the boundary of the approximated shape.

In order to improve the approximation of multiple-component shapes (without any knowledge on the number of components in advance), we use in this paper a piecewise Bézier parameterization and we consider two procedures called intersecting control polygons detection and flip procedure. The first one allows to prevent potential collisions between two parts of the boundary of the approximated shape, and the second one permits to change its topology by dividing a one-component shape into a two-component shape.

For an experimental purpose, we include these two processes in a basic geometrical shape optimization algorithm and test it on the classical inverse obstacle problem. This new approach allows to obtain a numerical approximation of the unknown inclusion, detecting both the topology (i.e. the number of connected components) and the shape of the obstacle. Several numerical simulations are performed.

Publié le :
DOI : 10.5802/smai-jcm.16
Classification : 68U05, 68W25, 49Q10, 65N21
Keywords: Shape approximation; free-form shapes; multiple-component shapes; Bézier curves; intersecting control polygons detection; flip procedure; inverse obstacle problem; shape optimization

Bonnelie, Pierre 1 ; Bourdin, Loïc 1 ; Caubet, Fabien 2 ; Ruatta, Olivier 1

1 Institut de recherche XLIM. Pôle Mathématiques-Informatique-Image. UMR CNRS 7252. Université de Limoges, France.
2 Institut de Mathématiques de Toulouse. UMR CNRS 5219. Université de Toulouse, France.
@article{SMAI-JCM_2016__2__255_0,
     author = {Bonnelie, Pierre and Bourdin, Lo{\"\i}c and Caubet, Fabien and Ruatta, Olivier},
     title = {Flip procedure in geometric approximation of multiple-component shapes {\textendash} {Application} to multiple-inclusion detection},
     journal = {The SMAI Journal of computational mathematics},
     pages = {255--276},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {2},
     year = {2016},
     doi = {10.5802/smai-jcm.16},
     mrnumber = {3633552},
     zbl = {1416.65417},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/smai-jcm.16/}
}
TY  - JOUR
AU  - Bonnelie, Pierre
AU  - Bourdin, Loïc
AU  - Caubet, Fabien
AU  - Ruatta, Olivier
TI  - Flip procedure in geometric approximation of multiple-component shapes – Application to multiple-inclusion detection
JO  - The SMAI Journal of computational mathematics
PY  - 2016
SP  - 255
EP  - 276
VL  - 2
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - http://geodesic.mathdoc.fr/articles/10.5802/smai-jcm.16/
DO  - 10.5802/smai-jcm.16
LA  - en
ID  - SMAI-JCM_2016__2__255_0
ER  - 
%0 Journal Article
%A Bonnelie, Pierre
%A Bourdin, Loïc
%A Caubet, Fabien
%A Ruatta, Olivier
%T Flip procedure in geometric approximation of multiple-component shapes – Application to multiple-inclusion detection
%J The SMAI Journal of computational mathematics
%D 2016
%P 255-276
%V 2
%I Société de Mathématiques Appliquées et Industrielles
%U http://geodesic.mathdoc.fr/articles/10.5802/smai-jcm.16/
%R 10.5802/smai-jcm.16
%G en
%F SMAI-JCM_2016__2__255_0
Bonnelie, Pierre; Bourdin, Loïc; Caubet, Fabien; Ruatta, Olivier. Flip procedure in geometric approximation of multiple-component shapes – Application to multiple-inclusion detection. The SMAI Journal of computational mathematics, Tome 2 (2016), pp. 255-276. doi: 10.5802/smai-jcm.16

Cité par Sources :