Supercharacter Theories of Type A Unipotent Radicals and Unipotent Polytopes
Séminaire lotharingien de combinatoire, 78B (2017)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

Even with the introduction of supercharacter theories, the representation theory of many unipotent groups remains mysterious. This paper constructs a family of supercharacter theories for normal pattern groups in a way that exhibit many of the combinatorial properties of the set partition combinatorics of the full uni-triangular groups, including combinatorial indexing sets, dimensions, and computable character formulas. Associated with these supercharacter theories is also a family of polytopes whose integer lattice points give the theories geometric underpinnings.

@article{SLC_2017_78B_a8,
     author = {Nathaniel Thiem},
     title = {Supercharacter {Theories} of {Type} {A} {Unipotent} {Radicals} and {Unipotent} {Polytopes}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {78B},
     year = {2017},
     url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a8/}
}
TY  - JOUR
AU  - Nathaniel Thiem
TI  - Supercharacter Theories of Type A Unipotent Radicals and Unipotent Polytopes
JO  - Séminaire lotharingien de combinatoire
PY  - 2017
VL  - 78B
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2017_78B_a8/
ID  - SLC_2017_78B_a8
ER  - 
%0 Journal Article
%A Nathaniel Thiem
%T Supercharacter Theories of Type A Unipotent Radicals and Unipotent Polytopes
%J Séminaire lotharingien de combinatoire
%D 2017
%V 78B
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2017_78B_a8/
%F SLC_2017_78B_a8
Nathaniel Thiem. Supercharacter Theories of Type A Unipotent Radicals and Unipotent Polytopes. Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a8/