Building Reverse Plane Partitions with Rim-Hook-Shaped Bricks
Séminaire lotharingien de combinatoire, 78B (2017)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

The generating function of reverse plane partitions of a fixed shape factors into a product featuring the hook-lengths of this shape. This result, which was first obtained by Stanley, can be explained bijectively using the Hillman-Grassl correspondence between reverse plane partitions and tableaux weighted by hook-lengths. In this extended abstract an alternative bijection between the same families of objects is presented. This construction is best perceived as a set of rules for building reverse plane partitions, viewed as arrangements of stacks of cubes, using bricks in the shape of rim-hooks.

@article{SLC_2017_78B_a64,
     author = {Robin Sulzgruber},
     title = {Building {Reverse} {Plane} {Partitions} with {Rim-Hook-Shaped} {Bricks}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {78B},
     year = {2017},
     url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a64/}
}
TY  - JOUR
AU  - Robin Sulzgruber
TI  - Building Reverse Plane Partitions with Rim-Hook-Shaped Bricks
JO  - Séminaire lotharingien de combinatoire
PY  - 2017
VL  - 78B
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2017_78B_a64/
ID  - SLC_2017_78B_a64
ER  - 
%0 Journal Article
%A Robin Sulzgruber
%T Building Reverse Plane Partitions with Rim-Hook-Shaped Bricks
%J Séminaire lotharingien de combinatoire
%D 2017
%V 78B
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2017_78B_a64/
%F SLC_2017_78B_a64
Robin Sulzgruber. Building Reverse Plane Partitions with Rim-Hook-Shaped Bricks. Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a64/