On Some Factorization Formulas of K-k-Schur Functions
Séminaire lotharingien de combinatoire, 78B (2017)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
We give some new formulas about factorizations of K-k-Schur functions g(k)λ, analogous to the k-rectangle factorization formula s(k)Rt u λ = s(k)Rt s(k)λ of k-Schur functions, where λ is any k-bounded partition and Rt denotes the partition (tk+1-t) called a k-rectangle. Although a formula of the same form does not hold for K-k-Schur functions, we can prove that g(k)Rt divides g(k)Rt u λ, and in fact more generally that g(k)P divides g(k)P u λ for any multiple k-rectangles P and any k-bounded partition λ. We give the factorization formula of such g(k)P and explicit formulas for g(k)P u λ / g(k)P in some cases.
@article{SLC_2017_78B_a58,
author = {Motoki Takigiku},
title = {On {Some} {Factorization} {Formulas} of {K-k-Schur} {Functions}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {78B},
year = {2017},
url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a58/}
}
Motoki Takigiku. On Some Factorization Formulas of K-k-Schur Functions. Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a58/