Noncommutative Free Cumulants
    
    
  
  
  
      
      
      
        
Séminaire lotharingien de combinatoire, 78B (2017)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
            
              The relation between moments and free cumulants in free probability is essentially a compositional inversion. We lift it at the level of the noncommutative Faà di Bruno algebra, and of an operad of Schröder trees. We get a new formula for free cumulants in terms of trees, and we recover an interpretation of the relation in terms of characters due to Ebrahimi-Fard and Patras. 
 
        
      
@article{SLC_2017_78B_a57,
     author = {Matthieu Josuat-Verg\`es and Fr\'ed\'eric Menous and Jean-Christophe Novelli and Jean-Yves Thibon},
     title = {Noncommutative {Free} {Cumulants}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {78B},
     year = {2017},
     url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a57/}
}
                      
                      
                    TY - JOUR AU - Matthieu Josuat-Vergès AU - Frédéric Menous AU - Jean-Christophe Novelli AU - Jean-Yves Thibon TI - Noncommutative Free Cumulants JO - Séminaire lotharingien de combinatoire PY - 2017 VL - 78B PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SLC_2017_78B_a57/ ID - SLC_2017_78B_a57 ER -
Matthieu Josuat-Vergès; Frédéric Menous; Jean-Christophe Novelli; Jean-Yves Thibon. Noncommutative Free Cumulants. Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a57/