A Remmel-Whitney Rule for Quasisymmetric Schur Functions
Séminaire lotharingien de combinatoire, 78B (2017)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

Remmel and Whitney provided an algorithmic procedure for determining the Littlewood-Richardson coefficients that appear in the Schur function expansion of a product of Schur functions. Haglund et al. introduced the quasisymmetric Schur functions as a basis for QSym. This paper adapts Remmel and Whitney's approach in order to determine the coefficients that appear in the quasisymmetric Schur function expansion of the product of a quasisymmetric Schur function and a (symmetric) Schur function.

@article{SLC_2017_78B_a56,
     author = {Elizabeth Niese},
     title = {A {Remmel-Whitney} {Rule} for {Quasisymmetric} {Schur} {Functions}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {78B},
     year = {2017},
     url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a56/}
}
TY  - JOUR
AU  - Elizabeth Niese
TI  - A Remmel-Whitney Rule for Quasisymmetric Schur Functions
JO  - Séminaire lotharingien de combinatoire
PY  - 2017
VL  - 78B
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2017_78B_a56/
ID  - SLC_2017_78B_a56
ER  - 
%0 Journal Article
%A Elizabeth Niese
%T A Remmel-Whitney Rule for Quasisymmetric Schur Functions
%J Séminaire lotharingien de combinatoire
%D 2017
%V 78B
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2017_78B_a56/
%F SLC_2017_78B_a56
Elizabeth Niese. A Remmel-Whitney Rule for Quasisymmetric Schur Functions. Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a56/