A Remmel-Whitney Rule for Quasisymmetric Schur Functions
Séminaire lotharingien de combinatoire, 78B (2017) Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website

Voir la notice de l'acte

Remmel and Whitney provided an algorithmic procedure for determining the Littlewood-Richardson coefficients that appear in the Schur function expansion of a product of Schur functions. Haglund et al. introduced the quasisymmetric Schur functions as a basis for QSym. This paper adapts Remmel and Whitney's approach in order to determine the coefficients that appear in the quasisymmetric Schur function expansion of the product of a quasisymmetric Schur function and a (symmetric) Schur function.

@article{SLC_2017_78B_a56,
     author = {Elizabeth Niese},
     title = {A {Remmel-Whitney} {Rule} for {Quasisymmetric} {Schur} {Functions}},
     journal = {S\'eminaire lotharingien de combinatoire},
     year = {2017},
     volume = {78B},
     url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a56/}
}
TY  - JOUR
AU  - Elizabeth Niese
TI  - A Remmel-Whitney Rule for Quasisymmetric Schur Functions
JO  - Séminaire lotharingien de combinatoire
PY  - 2017
VL  - 78B
UR  - http://geodesic.mathdoc.fr/item/SLC_2017_78B_a56/
ID  - SLC_2017_78B_a56
ER  - 
%0 Journal Article
%A Elizabeth Niese
%T A Remmel-Whitney Rule for Quasisymmetric Schur Functions
%J Séminaire lotharingien de combinatoire
%D 2017
%V 78B
%U http://geodesic.mathdoc.fr/item/SLC_2017_78B_a56/
%F SLC_2017_78B_a56
Elizabeth Niese. A Remmel-Whitney Rule for Quasisymmetric Schur Functions. Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a56/