Bijective Combinatorial Proof of the Commutation of Transfer Matrices in the Dense O(1) Loop Model
    
    
  
  
  
      
      
      
        
Séminaire lotharingien de combinatoire, Tome 73 (2015-2016)
    
  
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
            
              The dense O(1) loop model is a statistical physics model with connections to the quantum XXZ spin chain, alternating sign matrices, the six-vertex model and critical bond percolation on the square lattice. When cylindrical boundary conditions are imposed, the model possesses a commuting family of transfer matrices. The original proof of the commutation property is algebraic and is based on the Yang-Baxter equation. In this paper we give a new proof of this fact using a direct combinatorial bijection. 
 
        
      
@article{SLC_2015-2016_73_a1,
     author = {Ron Peled and Dan Romik},
     title = {Bijective {Combinatorial} {Proof} of the {Commutation} of {Transfer} {Matrices} in the {Dense} {O(1)} {Loop} {Model}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {73},
     year = {2015-2016},
     url = {http://geodesic.mathdoc.fr/item/SLC_2015-2016_73_a1/}
}
                      
                      
                    TY - JOUR AU - Ron Peled AU - Dan Romik TI - Bijective Combinatorial Proof of the Commutation of Transfer Matrices in the Dense O(1) Loop Model JO - Séminaire lotharingien de combinatoire PY - 2015-2016 VL - 73 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SLC_2015-2016_73_a1/ ID - SLC_2015-2016_73_a1 ER -
Ron Peled; Dan Romik. Bijective Combinatorial Proof of the Commutation of Transfer Matrices in the Dense O(1) Loop Model. Séminaire lotharingien de combinatoire, Tome 73 (2015-2016). http://geodesic.mathdoc.fr/item/SLC_2015-2016_73_a1/
