Bijective Proofs of Character Evaluations Using the Trace Forest of Jeu de Taquin
Séminaire lotharingien de combinatoire, Tome 72 (2014-2015)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

Irreducible characters of the symmetric group are of special interest in combinatorics. They can be expressed either combinatorially using ribbon tableaux, or algebraically using contents. In this paper, these two expressions are related in a combinatorial way. We first introduce a fine structure in the famous jeu de taquin called "trace forest", with the help of which we are able to count certain types of ribbon tableaux, leading to a simple bijective proof of a character evaluation formula in terms of contents that dates back to Frobenius (1901). Inspired by this proof, we give an inductive scheme that provides combinatorial proofs of more complicated character formulae in terms of contents.

@article{SLC_2014-2015_72_a4,
     author = {Wenjie Fang},
     title = {Bijective {Proofs} of {Character} {Evaluations} {Using} the {Trace} {Forest} of {Jeu} de {Taquin}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {72},
     year = {2014-2015},
     url = {http://geodesic.mathdoc.fr/item/SLC_2014-2015_72_a4/}
}
TY  - JOUR
AU  - Wenjie Fang
TI  - Bijective Proofs of Character Evaluations Using the Trace Forest of Jeu de Taquin
JO  - Séminaire lotharingien de combinatoire
PY  - 2014-2015
VL  - 72
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2014-2015_72_a4/
ID  - SLC_2014-2015_72_a4
ER  - 
%0 Journal Article
%A Wenjie Fang
%T Bijective Proofs of Character Evaluations Using the Trace Forest of Jeu de Taquin
%J Séminaire lotharingien de combinatoire
%D 2014-2015
%V 72
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2014-2015_72_a4/
%F SLC_2014-2015_72_a4
Wenjie Fang. Bijective Proofs of Character Evaluations Using the Trace Forest of Jeu de Taquin. Séminaire lotharingien de combinatoire, Tome 72 (2014-2015). http://geodesic.mathdoc.fr/item/SLC_2014-2015_72_a4/