A Symmetrical q-Eulerian Identity
    
    
  
  
  
      
      
      
        
Séminaire lotharingien de combinatoire, Tome 67 (2012-2015)
    
  
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
            
              We find a q-analog of the following symmetrical identity involving binomial coefficients $ \binom{n}{m}$ and Eulerian numbers An,m, due to Chung, Graham and Knuth [J. Comb., 1 (2010), 29-38]:   
 We give two proofs, using generating function and bijections, respectively. 
 
        
      | $\displaystyle \sum_{k\geq 0}\binom{a+b}{k}A_{k,a-1}=\sum_{k\geq 0}\binom{ a+b}{k}A_{k,b-1}.$ | 
@article{SLC_2012-2015_67_a2,
     author = {Guo-Niu Han and Zhicong Lin and Jiang Zeng},
     title = {A {Symmetrical} {q-Eulerian} {Identity}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {67},
     year = {2012-2015},
     url = {http://geodesic.mathdoc.fr/item/SLC_2012-2015_67_a2/}
}
                      
                      
                    Guo-Niu Han; Zhicong Lin; Jiang Zeng. A Symmetrical q-Eulerian Identity. Séminaire lotharingien de combinatoire, Tome 67 (2012-2015). http://geodesic.mathdoc.fr/item/SLC_2012-2015_67_a2/
