Gog and Magog Triangles, and the Schützenberger Involution
Séminaire lotharingien de combinatoire, Tome 66 (2011-2012)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

We describe an approach to finding a bijection between Alternating Sign Matrices and Totally Symmetric Self-Complementary Plane Partitions, which is based on the Schützenberger involution. In particular, we give an explicit bijection between Gog and Magog trapezoids with two diagonals.

@article{SLC_2011-2012_66_a3,
     author = {Hayat Cheballah and Philippe Biane},
     title = {Gog and {Magog} {Triangles,} and the {Sch\"utzenberger} {Involution}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {66},
     year = {2011-2012},
     url = {http://geodesic.mathdoc.fr/item/SLC_2011-2012_66_a3/}
}
TY  - JOUR
AU  - Hayat Cheballah
AU  - Philippe Biane
TI  - Gog and Magog Triangles, and the Schützenberger Involution
JO  - Séminaire lotharingien de combinatoire
PY  - 2011-2012
VL  - 66
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2011-2012_66_a3/
ID  - SLC_2011-2012_66_a3
ER  - 
%0 Journal Article
%A Hayat Cheballah
%A Philippe Biane
%T Gog and Magog Triangles, and the Schützenberger Involution
%J Séminaire lotharingien de combinatoire
%D 2011-2012
%V 66
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2011-2012_66_a3/
%F SLC_2011-2012_66_a3
Hayat Cheballah; Philippe Biane. Gog and Magog Triangles, and the Schützenberger Involution. Séminaire lotharingien de combinatoire, Tome 66 (2011-2012). http://geodesic.mathdoc.fr/item/SLC_2011-2012_66_a3/