Explicit Formula for the Generating Series of Diagonal 3D Rook Paths
Séminaire lotharingien de combinatoire, Tome 66 (2011-2012)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
Let an denote the number of ways in which a chess rook can move from a corner cell to the opposite corner cell of an n x n x n three-dimensional chessboard, assuming that the piece moves closer to the goal cell at each step. We describe the computer-driven discovery and proof of the fact that the generating series $ G(x)= \sum_{n \geq 0} a_n x^n$ admits the following explicit expression in terms of a Gaussian hypergeometric function:
$\displaystyle G(x) = 1 + 6 \cdot \int_0^x \frac{ \,\pFq21{1/3}{2/ 3}{2} {\frac{27 w(2-3w)}{(1-4w)^3}}}{(1-4w)(1-64w)} \, dw. $
@article{SLC_2011-2012_66_a0,
author = {Alin Bostan and Fr\'ed\'eric Chyzak and Mark van Hoeij and Lucien Pech},
title = {Explicit {Formula} for the {Generating} {Series} of {Diagonal} {3D} {Rook} {Paths}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {66},
year = {2011-2012},
url = {http://geodesic.mathdoc.fr/item/SLC_2011-2012_66_a0/}
}
TY - JOUR AU - Alin Bostan AU - Frédéric Chyzak AU - Mark van Hoeij AU - Lucien Pech TI - Explicit Formula for the Generating Series of Diagonal 3D Rook Paths JO - Séminaire lotharingien de combinatoire PY - 2011-2012 VL - 66 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SLC_2011-2012_66_a0/ ID - SLC_2011-2012_66_a0 ER -
%0 Journal Article %A Alin Bostan %A Frédéric Chyzak %A Mark van Hoeij %A Lucien Pech %T Explicit Formula for the Generating Series of Diagonal 3D Rook Paths %J Séminaire lotharingien de combinatoire %D 2011-2012 %V 66 %I mathdoc %U http://geodesic.mathdoc.fr/item/SLC_2011-2012_66_a0/ %F SLC_2011-2012_66_a0
Alin Bostan; Frédéric Chyzak; Mark van Hoeij; Lucien Pech. Explicit Formula for the Generating Series of Diagonal 3D Rook Paths. Séminaire lotharingien de combinatoire, Tome 66 (2011-2012). http://geodesic.mathdoc.fr/item/SLC_2011-2012_66_a0/