A Bijection Between Well-Labelled Positive Paths and Matchings
Séminaire lotharingien de combinatoire, Tome 63 (2010)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

A well-labelled positive path of size n is a pair (p,\sigma) made of a word p=p1p2...pn-1 on the alphabet {-1,0,+1} such that \sum_{i=1}^j pi >= 0 for all j=1,...,n-1, together with a permutation \sigma=\sigma1\sigma2...\sigman of {1,...,n} such that pi=-1 implies \sigmai<\sigmai+1, while pi=1 implies \sigmai>\sigmai+1. We establish a bijection between well-labelled positive paths of size n and matchings (i.e., fixed-point free involutions) on {1,...,2n}. This proves that the number of well-labelled positive paths is (2n-1)!!=(2n-1).(2n-3)...3.1.

Well-labelled positive paths appeared recently in the author's article "Partition function of a freely-jointed chain in a half-space" [in preparation] as a useful tool for studying a polytope \Pin related to the space of configurations of the freely-jointed chain (of length n) in a half-space. The polytope \Pin consists of points (x1,...,xn) in [-1,1]n such that \sum_{i=1}^j xi >= 0 for all j=1,...,n, and it was shown that well-labelled positive paths of size n are in bijection with a collection of subpolytopes partitioning \Pin. Given that the volume of each subpolytope is 1/n!, our results prove combinatorially that the volume of \Pin is (2n-1)!!/n!.

Our bijection has other enumerative corollaries in terms of up-down sequences of permutations. Indeed, by specialising our bijection, we prove that the number of permutations of size n such that each prefix has no more ascents than descents is [(n-1)!!]2 if n is even and n!!(n-2)!! if n is odd.

@article{SLC_2010_63_a4,
     author = {Olivier Bernardi and Bertrand Duplantier and Philippe Nadeau},
     title = {A {Bijection} {Between} {Well-Labelled} {Positive} {Paths} and {Matchings}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {63},
     year = {2010},
     url = {http://geodesic.mathdoc.fr/item/SLC_2010_63_a4/}
}
TY  - JOUR
AU  - Olivier Bernardi
AU  - Bertrand Duplantier
AU  - Philippe Nadeau
TI  - A Bijection Between Well-Labelled Positive Paths and Matchings
JO  - Séminaire lotharingien de combinatoire
PY  - 2010
VL  - 63
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2010_63_a4/
ID  - SLC_2010_63_a4
ER  - 
%0 Journal Article
%A Olivier Bernardi
%A Bertrand Duplantier
%A Philippe Nadeau
%T A Bijection Between Well-Labelled Positive Paths and Matchings
%J Séminaire lotharingien de combinatoire
%D 2010
%V 63
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2010_63_a4/
%F SLC_2010_63_a4
Olivier Bernardi; Bertrand Duplantier; Philippe Nadeau. A Bijection Between Well-Labelled Positive Paths and Matchings. Séminaire lotharingien de combinatoire, Tome 63 (2010). http://geodesic.mathdoc.fr/item/SLC_2010_63_a4/