Hankel Determinants of Some Sequences of Polynomials
Séminaire lotharingien de combinatoire, Tome 63 (2010)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

Ehrenborg gave a combinatorial proof of Radoux's theorem which states that the determinant of the (n+1)x(n+1) dimensional Hankel matrix of exponential polynomials is xn(n+1)/2 \prod_{i=0}^n i!. This proof also shows the result that the (n+1)x(n+1) Hankel matrix of factorial numbers is \prod_{k=1}^n (k!)2. We observe that two polynomial generalizations of factorial numbers also have interesting determinant values for Hankel matrices.

A polynomial generalization of the determinant of the Hankel matrix with entries being fixed-point free involutions on the set [2n] is given next. We also give a bivariate non-crossing analogue of a theorem of Cigler about the determinant of a similar Hankel matrix.

@article{SLC_2010_63_a3,
     author = {Sivaramakrishnan Sivasubramanian},
     title = {Hankel {Determinants} of {Some} {Sequences} of {Polynomials}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {63},
     year = {2010},
     url = {http://geodesic.mathdoc.fr/item/SLC_2010_63_a3/}
}
TY  - JOUR
AU  - Sivaramakrishnan Sivasubramanian
TI  - Hankel Determinants of Some Sequences of Polynomials
JO  - Séminaire lotharingien de combinatoire
PY  - 2010
VL  - 63
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2010_63_a3/
ID  - SLC_2010_63_a3
ER  - 
%0 Journal Article
%A Sivaramakrishnan Sivasubramanian
%T Hankel Determinants of Some Sequences of Polynomials
%J Séminaire lotharingien de combinatoire
%D 2010
%V 63
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2010_63_a3/
%F SLC_2010_63_a3
Sivaramakrishnan Sivasubramanian. Hankel Determinants of Some Sequences of Polynomials. Séminaire lotharingien de combinatoire, Tome 63 (2010). http://geodesic.mathdoc.fr/item/SLC_2010_63_a3/