Generalized Dumont-Foata Polynomials and Alternative Tableaux
Séminaire lotharingien de combinatoire, Tome 64 (2010-2011)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
Dumont and Foata introduced in 1976 a three-variable symmetric refinement of Genocchi numbers, which satisfies a simple recurrence relation. A six-variable generalization with many similar properties was later considered by Dumont. It generalizes a lot of known integer sequences, and its ordinary generating function can be expanded as a Jacobi continued fraction. We give here a new combinatorial interpretation of the six-variable polynomials in terms of the alternative tableaux introduced by Viennot. A powerful tool to enumerate alternative tableaux is the so-called "matrix Ansatz," and using this we show that our combinatorial interpretation naturally leads to a new proof of the continued fraction expansion.
@article{SLC_2010-2011_64_a1,
author = {Matthieu Josuat-Verg\`es},
title = {Generalized {Dumont-Foata} {Polynomials} and {Alternative} {Tableaux}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {64},
year = {2010-2011},
url = {http://geodesic.mathdoc.fr/item/SLC_2010-2011_64_a1/}
}
Matthieu Josuat-Vergès. Generalized Dumont-Foata Polynomials and Alternative Tableaux. Séminaire lotharingien de combinatoire, Tome 64 (2010-2011). http://geodesic.mathdoc.fr/item/SLC_2010-2011_64_a1/