Generalized Dumont-Foata Polynomials and Alternative Tableaux
Séminaire lotharingien de combinatoire, Tome 64 (2010-2011)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

Dumont and Foata introduced in 1976 a three-variable symmetric refinement of Genocchi numbers, which satisfies a simple recurrence relation. A six-variable generalization with many similar properties was later considered by Dumont. It generalizes a lot of known integer sequences, and its ordinary generating function can be expanded as a Jacobi continued fraction. We give here a new combinatorial interpretation of the six-variable polynomials in terms of the alternative tableaux introduced by Viennot. A powerful tool to enumerate alternative tableaux is the so-called "matrix Ansatz," and using this we show that our combinatorial interpretation naturally leads to a new proof of the continued fraction expansion.

@article{SLC_2010-2011_64_a1,
     author = {Matthieu Josuat-Verg\`es},
     title = {Generalized {Dumont-Foata} {Polynomials} and {Alternative} {Tableaux}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {64},
     year = {2010-2011},
     url = {http://geodesic.mathdoc.fr/item/SLC_2010-2011_64_a1/}
}
TY  - JOUR
AU  - Matthieu Josuat-Vergès
TI  - Generalized Dumont-Foata Polynomials and Alternative Tableaux
JO  - Séminaire lotharingien de combinatoire
PY  - 2010-2011
VL  - 64
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2010-2011_64_a1/
ID  - SLC_2010-2011_64_a1
ER  - 
%0 Journal Article
%A Matthieu Josuat-Vergès
%T Generalized Dumont-Foata Polynomials and Alternative Tableaux
%J Séminaire lotharingien de combinatoire
%D 2010-2011
%V 64
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2010-2011_64_a1/
%F SLC_2010-2011_64_a1
Matthieu Josuat-Vergès. Generalized Dumont-Foata Polynomials and Alternative Tableaux. Séminaire lotharingien de combinatoire, Tome 64 (2010-2011). http://geodesic.mathdoc.fr/item/SLC_2010-2011_64_a1/