Solution to a Combinatorial Puzzle Arising from Mayer's Theory of Cluster Integrals
Séminaire lotharingien de combinatoire, Tome 59 (2008-2010)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

Mayer's theory of cluster integrals allows one to write the partition function of a gas model as a generating function of weighted graphs. Recently, Labelle, Leroux and Ducharme have studied the graph weights arising from the one-dimensional hard-core gas model and noticed that the sum of the weights over all connected graphs with n vertices is (-n)n-1. This is, up to sign, the number of rooted Cayley trees on n vertices and the authors asked for a combinatorial explanation. The main goal of this article is to provide such an explanation.

@article{SLC_2008-2010_59_a3,
     author = {Olivier Bernardi},
     title = {Solution to a {Combinatorial} {Puzzle} {Arising} from {Mayer's} {Theory} of {Cluster} {Integrals}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {59},
     year = {2008-2010},
     url = {http://geodesic.mathdoc.fr/item/SLC_2008-2010_59_a3/}
}
TY  - JOUR
AU  - Olivier Bernardi
TI  - Solution to a Combinatorial Puzzle Arising from Mayer's Theory of Cluster Integrals
JO  - Séminaire lotharingien de combinatoire
PY  - 2008-2010
VL  - 59
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2008-2010_59_a3/
ID  - SLC_2008-2010_59_a3
ER  - 
%0 Journal Article
%A Olivier Bernardi
%T Solution to a Combinatorial Puzzle Arising from Mayer's Theory of Cluster Integrals
%J Séminaire lotharingien de combinatoire
%D 2008-2010
%V 59
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2008-2010_59_a3/
%F SLC_2008-2010_59_a3
Olivier Bernardi. Solution to a Combinatorial Puzzle Arising from Mayer's Theory of Cluster Integrals. Séminaire lotharingien de combinatoire, Tome 59 (2008-2010). http://geodesic.mathdoc.fr/item/SLC_2008-2010_59_a3/