Non-Symmetric Hall-Littlewood Polynomials
Séminaire lotharingien de combinatoire, 54A (2005-2007)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
Using the action of the Yang-Baxter elements of the Hecke algebra on polynomials, we define two bases of polynomials in n variables. The Hall-Littlewood polynomials are a subfamily of one of them. For q=0, these bases specialize to the two families of classical Key polynomials (i.e., Demazure characters for type A). We give a scalar product for which the two bases are adjoint to each other.
@article{SLC_2005-2007_54A_a17,
author = {Fran\c{c}ois Descouens and Alain Lascoux},
title = {Non-Symmetric {Hall-Littlewood} {Polynomials}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {54A},
year = {2005-2007},
url = {http://geodesic.mathdoc.fr/item/SLC_2005-2007_54A_a17/}
}
François Descouens; Alain Lascoux. Non-Symmetric Hall-Littlewood Polynomials. Séminaire lotharingien de combinatoire, 54A (2005-2007). http://geodesic.mathdoc.fr/item/SLC_2005-2007_54A_a17/