Generalized Pattern Avoidance with Additional Restrictions
Séminaire lotharingien de combinatoire, Tome 48 (2002-2003)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

Babson and Steingrímsson introduced generalized permutation patterns that allow the requirement that two adjacent letters in a pattern must be adjacent in the permutation. We consider n-permutations that avoid the generalized pattern 1-32 and whose k rightmost letters form an increasing subword. The number of such permutations is a linear combination of Bell numbers. We find a bijection between these permutations and all partitions of an (n-1)-element set with one subset marked that satisfy certain additional conditions. Also we find the e.g.f. for the number of permutations that avoid a generalized 3-pattern with no dashes and whose k leftmost or k rightmost letters form either an increasing or decreasing subword. Moreover, we find a bijection between n-permutations that avoid the pattern 132 and begin with the pattern 12 and increasing rooted trimmed trees with n+1 nodes.

@article{SLC_2002-2003_48_a4,
     author = {Sergey Kitaev},
     title = {Generalized {Pattern} {Avoidance} with {Additional} {Restrictions}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {48},
     year = {2002-2003},
     url = {http://geodesic.mathdoc.fr/item/SLC_2002-2003_48_a4/}
}
TY  - JOUR
AU  - Sergey Kitaev
TI  - Generalized Pattern Avoidance with Additional Restrictions
JO  - Séminaire lotharingien de combinatoire
PY  - 2002-2003
VL  - 48
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2002-2003_48_a4/
ID  - SLC_2002-2003_48_a4
ER  - 
%0 Journal Article
%A Sergey Kitaev
%T Generalized Pattern Avoidance with Additional Restrictions
%J Séminaire lotharingien de combinatoire
%D 2002-2003
%V 48
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2002-2003_48_a4/
%F SLC_2002-2003_48_a4
Sergey Kitaev. Generalized Pattern Avoidance with Additional Restrictions. Séminaire lotharingien de combinatoire, Tome 48 (2002-2003). http://geodesic.mathdoc.fr/item/SLC_2002-2003_48_a4/