Generalized Pattern Avoidance with Additional Restrictions
Séminaire lotharingien de combinatoire, Tome 48 (2002-2003) Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website

Voir la notice de l'acte

Babson and Steingrímsson introduced generalized permutation patterns that allow the requirement that two adjacent letters in a pattern must be adjacent in the permutation. We consider n-permutations that avoid the generalized pattern 1-32 and whose k rightmost letters form an increasing subword. The number of such permutations is a linear combination of Bell numbers. We find a bijection between these permutations and all partitions of an (n-1)-element set with one subset marked that satisfy certain additional conditions. Also we find the e.g.f. for the number of permutations that avoid a generalized 3-pattern with no dashes and whose k leftmost or k rightmost letters form either an increasing or decreasing subword. Moreover, we find a bijection between n-permutations that avoid the pattern 132 and begin with the pattern 12 and increasing rooted trimmed trees with n+1 nodes.

@article{SLC_2002-2003_48_a4,
     author = {Sergey Kitaev},
     title = {Generalized {Pattern} {Avoidance} with {Additional} {Restrictions}},
     journal = {S\'eminaire lotharingien de combinatoire},
     year = {2002-2003},
     volume = {48},
     url = {http://geodesic.mathdoc.fr/item/SLC_2002-2003_48_a4/}
}
TY  - JOUR
AU  - Sergey Kitaev
TI  - Generalized Pattern Avoidance with Additional Restrictions
JO  - Séminaire lotharingien de combinatoire
PY  - 2002-2003
VL  - 48
UR  - http://geodesic.mathdoc.fr/item/SLC_2002-2003_48_a4/
ID  - SLC_2002-2003_48_a4
ER  - 
%0 Journal Article
%A Sergey Kitaev
%T Generalized Pattern Avoidance with Additional Restrictions
%J Séminaire lotharingien de combinatoire
%D 2002-2003
%V 48
%U http://geodesic.mathdoc.fr/item/SLC_2002-2003_48_a4/
%F SLC_2002-2003_48_a4
Sergey Kitaev. Generalized Pattern Avoidance with Additional Restrictions. Séminaire lotharingien de combinatoire, Tome 48 (2002-2003). http://geodesic.mathdoc.fr/item/SLC_2002-2003_48_a4/