Identically Distributed Pairs of Partition Statistics
Séminaire lotharingien de combinatoire, Tome 44 (2000-2001)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

We show that many theorems which assert that two kinds of partitions of the same integer n are equinumerous are actually special cases of a much stronger form of equality. We show that in fact there correspond partition statistics X and Y that have identical distribution functions. The method is an extension of the principle of sieve-equivalence, and it yields simple criteria under which we can infer this identity of distribution functions.

@article{SLC_2000-2001_44_a2,
     author = {Herbert S. Wilf},
     title = {Identically {Distributed} {Pairs} of {Partition} {Statistics}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {44},
     year = {2000-2001},
     url = {http://geodesic.mathdoc.fr/item/SLC_2000-2001_44_a2/}
}
TY  - JOUR
AU  - Herbert S. Wilf
TI  - Identically Distributed Pairs of Partition Statistics
JO  - Séminaire lotharingien de combinatoire
PY  - 2000-2001
VL  - 44
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2000-2001_44_a2/
ID  - SLC_2000-2001_44_a2
ER  - 
%0 Journal Article
%A Herbert S. Wilf
%T Identically Distributed Pairs of Partition Statistics
%J Séminaire lotharingien de combinatoire
%D 2000-2001
%V 44
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2000-2001_44_a2/
%F SLC_2000-2001_44_a2
Herbert S. Wilf. Identically Distributed Pairs of Partition Statistics. Séminaire lotharingien de combinatoire, Tome 44 (2000-2001). http://geodesic.mathdoc.fr/item/SLC_2000-2001_44_a2/