Identically Distributed Pairs of Partition Statistics
Séminaire lotharingien de combinatoire, Tome 44 (2000-2001) Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website

Voir la notice de l'acte

We show that many theorems which assert that two kinds of partitions of the same integer n are equinumerous are actually special cases of a much stronger form of equality. We show that in fact there correspond partition statistics X and Y that have identical distribution functions. The method is an extension of the principle of sieve-equivalence, and it yields simple criteria under which we can infer this identity of distribution functions.

@article{SLC_2000-2001_44_a2,
     author = {Herbert S. Wilf},
     title = {Identically {Distributed} {Pairs} of {Partition} {Statistics}},
     journal = {S\'eminaire lotharingien de combinatoire},
     year = {2000-2001},
     volume = {44},
     url = {http://geodesic.mathdoc.fr/item/SLC_2000-2001_44_a2/}
}
TY  - JOUR
AU  - Herbert S. Wilf
TI  - Identically Distributed Pairs of Partition Statistics
JO  - Séminaire lotharingien de combinatoire
PY  - 2000-2001
VL  - 44
UR  - http://geodesic.mathdoc.fr/item/SLC_2000-2001_44_a2/
ID  - SLC_2000-2001_44_a2
ER  - 
%0 Journal Article
%A Herbert S. Wilf
%T Identically Distributed Pairs of Partition Statistics
%J Séminaire lotharingien de combinatoire
%D 2000-2001
%V 44
%U http://geodesic.mathdoc.fr/item/SLC_2000-2001_44_a2/
%F SLC_2000-2001_44_a2
Herbert S. Wilf. Identically Distributed Pairs of Partition Statistics. Séminaire lotharingien de combinatoire, Tome 44 (2000-2001). http://geodesic.mathdoc.fr/item/SLC_2000-2001_44_a2/