Identically Distributed Pairs of Partition Statistics
Séminaire lotharingien de combinatoire, Tome 44 (2000-2001)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
We show that many theorems which assert that two kinds of partitions of the same integer n are equinumerous are actually special cases of a much stronger form of equality. We show that in fact there correspond partition statistics X and Y that have identical distribution functions. The method is an extension of the principle of sieve-equivalence, and it yields simple criteria under which we can infer this identity of distribution functions.
@article{SLC_2000-2001_44_a2,
author = {Herbert S. Wilf},
title = {Identically {Distributed} {Pairs} of {Partition} {Statistics}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {44},
year = {2000-2001},
url = {http://geodesic.mathdoc.fr/item/SLC_2000-2001_44_a2/}
}
Herbert S. Wilf. Identically Distributed Pairs of Partition Statistics. Séminaire lotharingien de combinatoire, Tome 44 (2000-2001). http://geodesic.mathdoc.fr/item/SLC_2000-2001_44_a2/