An Extension of Franklin's Bijection
Séminaire lotharingien de combinatoire, Tome 42 (1998-1999)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
We are dealing here with the power series expansion of the product F(m,q)=(1-qm+1)(1-qm+2)(1-qm+3)... This expansion may be readily obtained from an identity of Sylvester and the latter, in turn, may be given a relatively simple combinatorial proof. Nevertheless, the problem remains to give a combinatorial explanation for the massive cancellations which produce the final result. The case m=0 is clearly explained by Franklin's proof of the Euler Pentagonal Number Theorem. Efforts to extend the same mechanism of proof to the general case m>0 have led to the discovery of an extension of the Franklin involution which explains all the components of the final expansion.
@article{SLC_1998-1999_42_a8,
author = {David P. Little},
title = {An {Extension} of {Franklin's} {Bijection}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {42},
year = {1998-1999},
url = {http://geodesic.mathdoc.fr/item/SLC_1998-1999_42_a8/}
}
David P. Little. An Extension of Franklin's Bijection. Séminaire lotharingien de combinatoire, Tome 42 (1998-1999). http://geodesic.mathdoc.fr/item/SLC_1998-1999_42_a8/