Multidimensional Matrix Inversions
Séminaire lotharingien de combinatoire, Tome 35 (1995) Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website

Voir la notice de l'acte

We compute the inverse of a specific infinite r-dimensional matrix, thus unifying multidimensional matrix inversions recently found by Milne, Lilly, and Bhatnagar. Our inversion is an r-dimensional extension of a matrix inversion previously found by Krattenthaler. We also compute the inverse of another infinite r-dimensional matrix. As an application of our matrix inversion, we derive new multidimensional bibasic summation formulas.

@article{SLC_1995_35_a6,
     author = {Michael Schlosser},
     title = {Multidimensional {Matrix} {Inversions}},
     journal = {S\'eminaire lotharingien de combinatoire},
     year = {1995},
     volume = {35},
     url = {http://geodesic.mathdoc.fr/item/SLC_1995_35_a6/}
}
TY  - JOUR
AU  - Michael Schlosser
TI  - Multidimensional Matrix Inversions
JO  - Séminaire lotharingien de combinatoire
PY  - 1995
VL  - 35
UR  - http://geodesic.mathdoc.fr/item/SLC_1995_35_a6/
ID  - SLC_1995_35_a6
ER  - 
%0 Journal Article
%A Michael Schlosser
%T Multidimensional Matrix Inversions
%J Séminaire lotharingien de combinatoire
%D 1995
%V 35
%U http://geodesic.mathdoc.fr/item/SLC_1995_35_a6/
%F SLC_1995_35_a6
Michael Schlosser. Multidimensional Matrix Inversions. Séminaire lotharingien de combinatoire, Tome 35 (1995). http://geodesic.mathdoc.fr/item/SLC_1995_35_a6/