Mnëv's Universality Theorem Revisited
Séminaire lotharingien de combinatoire, Tome 34 (1995)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

This article presents a complete proof of Mnëv's Universality Theorem and a complete proof of Mnëv's Universal Partition Theorem for oriented matroids. The Universality Theorem states that, for every primary semialgebraic set V there is an oriented matroid M, whose realization space is stably equivalent to V. The Universal Partition Theorem states that, for every partition V of Rn indiced by m polynomial functions f(1),...,f(n) with integer coefficients there is a corresponding family of oriented matroids (M(s)), with s ranging in the set of m-tuples with elements in {-1,0,+1}, such that the collection of their realization spaces is stably equivalent to the family V.

@article{SLC_1995_34_a7,
     author = {J\"urgen Richter-Gebert},
     title = {Mn\"ev's {Universality} {Theorem} {Revisited}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {34},
     year = {1995},
     url = {http://geodesic.mathdoc.fr/item/SLC_1995_34_a7/}
}
TY  - JOUR
AU  - Jürgen Richter-Gebert
TI  - Mnëv's Universality Theorem Revisited
JO  - Séminaire lotharingien de combinatoire
PY  - 1995
VL  - 34
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_1995_34_a7/
ID  - SLC_1995_34_a7
ER  - 
%0 Journal Article
%A Jürgen Richter-Gebert
%T Mnëv's Universality Theorem Revisited
%J Séminaire lotharingien de combinatoire
%D 1995
%V 34
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_1995_34_a7/
%F SLC_1995_34_a7
Jürgen Richter-Gebert. Mnëv's Universality Theorem Revisited. Séminaire lotharingien de combinatoire, Tome 34 (1995). http://geodesic.mathdoc.fr/item/SLC_1995_34_a7/