Résidus quadratiques et nombres de classes
Séminaire lotharingien de combinatoire, Tome 22 (1989)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
Let p be a prime number congruent to 3 modulo 4. A classical formula of Dirichlet relates the surplus of the residues over the non-residues in the interval [1,(p-1)/2] to the class number h(-p). It is still an open problem how to give a direct and non-analytic proof of this result. We give here a detailed and elementary presentation of the subject, as well as an analytic proof where the theory of divergent series enters naturally.
@article{SLC_1989_22_a7,
author = {Dominique Dumont},
title = {R\'esidus quadratiques et nombres de classes},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {22},
year = {1989},
url = {http://geodesic.mathdoc.fr/item/SLC_1989_22_a7/}
}
Dominique Dumont. Résidus quadratiques et nombres de classes. Séminaire lotharingien de combinatoire, Tome 22 (1989). http://geodesic.mathdoc.fr/item/SLC_1989_22_a7/