Über die kanonische Form binärer Formen
Séminaire lotharingien de combinatoire, Tome 19 (1988) Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website

Voir la notice de l'acte

According to Sylvester, in general, a binary form P of degree n with complex coefficients can be written as a sum of at most (n/2+1) n-th powers of linear forms. Such a representation of minimal length is called a canonical form of P. Algorithms for the computation of a canonical form were already given by Sylvester and Gundelfinger. More efficiently, however, is an extended form of the Berlekamp algorithm for the decoding of Reed-Solomon codes, due to the author [Discrete Math. 90 (1991), 21-40].

The paper has been finally published under the title "On computing the canonical form for a binary form of odd degree" in J. Symbolic Comput. 8 (1989), 327-333.

@article{SLC_1988_19_a4,
     author = {Arne D\"ur},
     title = {\"Uber die kanonische {Form} bin\"arer {Formen}},
     journal = {S\'eminaire lotharingien de combinatoire},
     year = {1988},
     volume = {19},
     url = {http://geodesic.mathdoc.fr/item/SLC_1988_19_a4/}
}
TY  - JOUR
AU  - Arne Dür
TI  - Über die kanonische Form binärer Formen
JO  - Séminaire lotharingien de combinatoire
PY  - 1988
VL  - 19
UR  - http://geodesic.mathdoc.fr/item/SLC_1988_19_a4/
ID  - SLC_1988_19_a4
ER  - 
%0 Journal Article
%A Arne Dür
%T Über die kanonische Form binärer Formen
%J Séminaire lotharingien de combinatoire
%D 1988
%V 19
%U http://geodesic.mathdoc.fr/item/SLC_1988_19_a4/
%F SLC_1988_19_a4
Arne Dür. Über die kanonische Form binärer Formen. Séminaire lotharingien de combinatoire, Tome 19 (1988). http://geodesic.mathdoc.fr/item/SLC_1988_19_a4/