Über die kanonische Form binärer Formen
Séminaire lotharingien de combinatoire, Tome 19 (1988)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

According to Sylvester, in general, a binary form P of degree n with complex coefficients can be written as a sum of at most (n/2+1) n-th powers of linear forms. Such a representation of minimal length is called a canonical form of P. Algorithms for the computation of a canonical form were already given by Sylvester and Gundelfinger. More efficiently, however, is an extended form of the Berlekamp algorithm for the decoding of Reed-Solomon codes, due to the author [Discrete Math. 90 (1991), 21-40].

The paper has been finally published under the title "On computing the canonical form for a binary form of odd degree" in J. Symbolic Comput. 8 (1989), 327-333.

@article{SLC_1988_19_a4,
     author = {Arne D\"ur},
     title = {\"Uber die kanonische {Form} bin\"arer {Formen}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {19},
     year = {1988},
     url = {http://geodesic.mathdoc.fr/item/SLC_1988_19_a4/}
}
TY  - JOUR
AU  - Arne Dür
TI  - Über die kanonische Form binärer Formen
JO  - Séminaire lotharingien de combinatoire
PY  - 1988
VL  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_1988_19_a4/
ID  - SLC_1988_19_a4
ER  - 
%0 Journal Article
%A Arne Dür
%T Über die kanonische Form binärer Formen
%J Séminaire lotharingien de combinatoire
%D 1988
%V 19
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_1988_19_a4/
%F SLC_1988_19_a4
Arne Dür. Über die kanonische Form binärer Formen. Séminaire lotharingien de combinatoire, Tome 19 (1988). http://geodesic.mathdoc.fr/item/SLC_1988_19_a4/