Über die kanonische Form binärer Formen
Séminaire lotharingien de combinatoire, Tome 19 (1988)
Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website
According to Sylvester, in general, a binary form P of degree n with complex coefficients can be written as a sum of at most (n/2+1) n-th powers of linear forms. Such a representation of minimal length is called a canonical form of P. Algorithms for the computation of a canonical form were already given by Sylvester and Gundelfinger. More efficiently, however, is an extended form of the Berlekamp algorithm for the decoding of Reed-Solomon codes, due to the author [Discrete Math. 90 (1991), 21-40].
The paper has been finally published under the title "On computing the canonical form for a binary form of odd degree" in J. Symbolic Comput. 8 (1989), 327-333.
@article{SLC_1988_19_a4,
author = {Arne D\"ur},
title = {\"Uber die kanonische {Form} bin\"arer {Formen}},
journal = {S\'eminaire lotharingien de combinatoire},
year = {1988},
volume = {19},
url = {http://geodesic.mathdoc.fr/item/SLC_1988_19_a4/}
}
Arne Dür. Über die kanonische Form binärer Formen. Séminaire lotharingien de combinatoire, Tome 19 (1988). http://geodesic.mathdoc.fr/item/SLC_1988_19_a4/