Representative Functions on the Algebra of Polynomials in Infinitely Many Variables
Séminaire lotharingien de combinatoire, Tome 12 (1985)
Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website
We address the following question: among the subIgebras of an incidence algebra of a given poset really useful in combinatorics, which is the greatest? It is clear that such a question, because of its vagueness, cannot receive a convincing final answer. Nevertheless, it is legitimate to make a proposal. In our opinion a good candidate is the subalgebra of representative functions relative to the algebra of polynomials (either in a finite number or in infinitely many variables). In this article, we shall give such functions a characterization and describe their usefulness in several settings.
@article{SLC_1985_12_a3,
author = {Luigi Cerlienco and Giorgio Nicoletti and Francesco Piras},
title = {Representative {Functions} on the {Algebra} of {Polynomials} in {Infinitely} {Many} {Variables}},
journal = {S\'eminaire lotharingien de combinatoire},
year = {1985},
volume = {12},
url = {http://geodesic.mathdoc.fr/item/SLC_1985_12_a3/}
}
TY - JOUR AU - Luigi Cerlienco AU - Giorgio Nicoletti AU - Francesco Piras TI - Representative Functions on the Algebra of Polynomials in Infinitely Many Variables JO - Séminaire lotharingien de combinatoire PY - 1985 VL - 12 UR - http://geodesic.mathdoc.fr/item/SLC_1985_12_a3/ ID - SLC_1985_12_a3 ER -
Luigi Cerlienco; Giorgio Nicoletti; Francesco Piras. Representative Functions on the Algebra of Polynomials in Infinitely Many Variables. Séminaire lotharingien de combinatoire, Tome 12 (1985). http://geodesic.mathdoc.fr/item/SLC_1985_12_a3/