Representative Functions on the Algebra of Polynomials in Infinitely Many Variables
Séminaire lotharingien de combinatoire, Tome 12 (1985)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

We address the following question: among the subIgebras of an incidence algebra of a given poset really useful in combinatorics, which is the greatest? It is clear that such a question, because of its vagueness, cannot receive a convincing final answer. Nevertheless, it is legitimate to make a proposal. In our opinion a good candidate is the subalgebra of representative functions relative to the algebra of polynomials (either in a finite number or in infinitely many variables). In this article, we shall give such functions a characterization and describe their usefulness in several settings.

@article{SLC_1985_12_a3,
     author = {Luigi Cerlienco and Giorgio Nicoletti and Francesco Piras},
     title = {Representative {Functions} on the {Algebra} of {Polynomials} in {Infinitely} {Many} {Variables}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {12},
     year = {1985},
     url = {http://geodesic.mathdoc.fr/item/SLC_1985_12_a3/}
}
TY  - JOUR
AU  - Luigi Cerlienco
AU  - Giorgio Nicoletti
AU  - Francesco Piras
TI  - Representative Functions on the Algebra of Polynomials in Infinitely Many Variables
JO  - Séminaire lotharingien de combinatoire
PY  - 1985
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_1985_12_a3/
ID  - SLC_1985_12_a3
ER  - 
%0 Journal Article
%A Luigi Cerlienco
%A Giorgio Nicoletti
%A Francesco Piras
%T Representative Functions on the Algebra of Polynomials in Infinitely Many Variables
%J Séminaire lotharingien de combinatoire
%D 1985
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_1985_12_a3/
%F SLC_1985_12_a3
Luigi Cerlienco; Giorgio Nicoletti; Francesco Piras. Representative Functions on the Algebra of Polynomials in Infinitely Many Variables. Séminaire lotharingien de combinatoire, Tome 12 (1985). http://geodesic.mathdoc.fr/item/SLC_1985_12_a3/