Representative Functions on the Algebra of Polynomials in Infinitely Many Variables
Séminaire lotharingien de combinatoire, Tome 12 (1985) Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website

Voir la notice de l'acte

We address the following question: among the subIgebras of an incidence algebra of a given poset really useful in combinatorics, which is the greatest? It is clear that such a question, because of its vagueness, cannot receive a convincing final answer. Nevertheless, it is legitimate to make a proposal. In our opinion a good candidate is the subalgebra of representative functions relative to the algebra of polynomials (either in a finite number or in infinitely many variables). In this article, we shall give such functions a characterization and describe their usefulness in several settings.

@article{SLC_1985_12_a3,
     author = {Luigi Cerlienco and Giorgio Nicoletti and Francesco Piras},
     title = {Representative {Functions} on the {Algebra} of {Polynomials} in {Infinitely} {Many} {Variables}},
     journal = {S\'eminaire lotharingien de combinatoire},
     year = {1985},
     volume = {12},
     url = {http://geodesic.mathdoc.fr/item/SLC_1985_12_a3/}
}
TY  - JOUR
AU  - Luigi Cerlienco
AU  - Giorgio Nicoletti
AU  - Francesco Piras
TI  - Representative Functions on the Algebra of Polynomials in Infinitely Many Variables
JO  - Séminaire lotharingien de combinatoire
PY  - 1985
VL  - 12
UR  - http://geodesic.mathdoc.fr/item/SLC_1985_12_a3/
ID  - SLC_1985_12_a3
ER  - 
%0 Journal Article
%A Luigi Cerlienco
%A Giorgio Nicoletti
%A Francesco Piras
%T Representative Functions on the Algebra of Polynomials in Infinitely Many Variables
%J Séminaire lotharingien de combinatoire
%D 1985
%V 12
%U http://geodesic.mathdoc.fr/item/SLC_1985_12_a3/
%F SLC_1985_12_a3
Luigi Cerlienco; Giorgio Nicoletti; Francesco Piras. Representative Functions on the Algebra of Polynomials in Infinitely Many Variables. Séminaire lotharingien de combinatoire, Tome 12 (1985). http://geodesic.mathdoc.fr/item/SLC_1985_12_a3/