A Common Generalization of Binomial Coefficients, Stirling Numbers and Gaussian Coefficients
Séminaire lotharingien de combinatoire, Tome 07 (1983)
Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website
We present a multi-parametric sequence of numbers of words that covers as special cases binomial coefficients, Stirling numbers of the second kind, Gaussian binomial coefficients, the number of afflne k-dimensional subspaces in the n-dimensional affine space over GF(q), and the number of Boolean sublattices in a given Boolean lattice.
@article{SLC_1983_07_a6,
author = {Bernd Voigt},
title = {A {Common} {Generalization} of {Binomial} {Coefficients,} {Stirling} {Numbers} and {Gaussian} {Coefficients}},
journal = {S\'eminaire lotharingien de combinatoire},
year = {1983},
volume = {07},
url = {http://geodesic.mathdoc.fr/item/SLC_1983_07_a6/}
}
Bernd Voigt. A Common Generalization of Binomial Coefficients, Stirling Numbers and Gaussian Coefficients. Séminaire lotharingien de combinatoire, Tome 07 (1983). http://geodesic.mathdoc.fr/item/SLC_1983_07_a6/