A Common Generalization of Binomial Coefficients, Stirling Numbers and Gaussian Coefficients
Séminaire lotharingien de combinatoire, Tome 07 (1983)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
We present a multi-parametric sequence of numbers of words that covers as special cases binomial coefficients, Stirling numbers of the second kind, Gaussian binomial coefficients, the number of afflne k-dimensional subspaces in the n-dimensional affine space over GF(q), and the number of Boolean sublattices in a given Boolean lattice.
@article{SLC_1983_07_a6,
author = {Bernd Voigt},
title = {A {Common} {Generalization} of {Binomial} {Coefficients,} {Stirling} {Numbers} and {Gaussian} {Coefficients}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {07},
year = {1983},
url = {http://geodesic.mathdoc.fr/item/SLC_1983_07_a6/}
}
Bernd Voigt. A Common Generalization of Binomial Coefficients, Stirling Numbers and Gaussian Coefficients. Séminaire lotharingien de combinatoire, Tome 07 (1983). http://geodesic.mathdoc.fr/item/SLC_1983_07_a6/