Realization of the adaptation criterion in the grid generation technology for constructions bounded by the surfaces of revolution with parallel axes of revolution
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 26 (2023) no. 1, pp. 93-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

A realization of an adaptation criterion in the technology of generation of three-dimensional structured grids designed for the numerical solution of differential equations modeling the vortex processes of multi-component hydrodynamics is described. Earlier the adaptation criterion was realized for volumes of revolution and volumes of revolution deformed by other volumes of revolution. The adaptation criterion is realized within a variational approach for the construction of optimal grids satisfying optimality criteria: closeness of the grid to a uniform and orthogonal one and adaptation to a given function. In the realization of the criterion, the technology is supplemented by a new way of boundary nodes computation and an algorithm for the construction of an admissible set for minimization of a discrete functional formalizing the optimality criteria. Examples of grids adapted to a given function and its first derivatives are given.
@article{SJVM_2023_26_1_a6,
     author = {O. V. Ushakova},
     title = {Realization of the adaptation criterion in the grid generation technology for constructions bounded by the surfaces of revolution with parallel axes of revolution},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {93--100},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2023_26_1_a6/}
}
TY  - JOUR
AU  - O. V. Ushakova
TI  - Realization of the adaptation criterion in the grid generation technology for constructions bounded by the surfaces of revolution with parallel axes of revolution
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2023
SP  - 93
EP  - 100
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2023_26_1_a6/
LA  - ru
ID  - SJVM_2023_26_1_a6
ER  - 
%0 Journal Article
%A O. V. Ushakova
%T Realization of the adaptation criterion in the grid generation technology for constructions bounded by the surfaces of revolution with parallel axes of revolution
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2023
%P 93-100
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2023_26_1_a6/
%G ru
%F SJVM_2023_26_1_a6
O. V. Ushakova. Realization of the adaptation criterion in the grid generation technology for constructions bounded by the surfaces of revolution with parallel axes of revolution. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 26 (2023) no. 1, pp. 93-100. http://geodesic.mathdoc.fr/item/SJVM_2023_26_1_a6/

[1] Ushakova O.V., “Usloviya nevyrozhdennosti trekhmernykh yacheek. Formula dlya ob'ema yacheek”, Zhurn. vychisl. matem. i mat. fiziki, 41:6 (2001), 881–894

[2] Bronina T.N., Gasilova I.A., Ushakova O.V., “Algoritmy postroeniya trekhmernykh strukturirovannykh setok”, Zhurn. vychisl. matem. i mat. fiziki, 43:6 (2003), 875–883

[3] Anuchina A.I., Artyomova N.A., Gordeychuck V.A., Ushakova O.V., “A technology for grid generation in volumes bounded by the surfaces of revolutions”, Numerical Geometry, Grid Generation and Scientific Computing, LNCSE, 131, eds. V.A. Garanzha et al., 2016, 281–292

[4] Anuchina N.N., Volkov V.I., Gordeychuk V.A., Es'kov N.S., Ilyutina O.S., and Kozyrev O.M., “Numerical simulation of 3D multi-component vortex flows by MAH-3 code”, Advances in Grid Generation, ed. O.V. Ushakova, Nova Science, New York, 2007, 337–380

[5] Ushakova O.V., “Algoritm korrektsii setki k oblasti vrascheniya”, Voprosy atomnoi nauki i tekhniki. Seriya: Matematicheskoe modelirovanie fizicheskikh protsessov, 1, 2016, 16–27

[6] Ushakova O.V., “Algoritmy optimizatsii trekhmernykh setok dlya oblastei vrascheniya”, Tr. IMM UrO RAN, 14, no. 1, 2008, 150–180

[7] Ushakova O.V., “Algoritm korrektsii setki k oblasti, obrazovannoi poverkhnostyami vrascheniya s parallelnymi osyami vrascheniya”, Voprosy atomnoi nauki i tekhniki. Ceriya: Matematicheskoe modelirovanie fizicheskikh protsessov, 2018, no. 1, 30–41

[8] Anuchina A.I., Artyomova N.A., Gordeychuck V.A., Ushakova O.V., “On the development of the grid generation technology for constructions bounded by the surfaces of revolutions”, AIP Conference Proceedings, 2312 (2020) | DOI

[9] Artyomova N.A., Ushakova O.V., “About grid generation in constructions bounded by the surfaces of revolution”, J. of Physics: Conference Series, 2099 (2021), 012018

[10] Ushakova O.V., “Realizatsii kriteriya adaptatsii v algoritme postroeniya optimalnykh setok”, Voprosy atomnoi nauki i tekhniki. Seriya: Matematicheskoe modelirovanie fizicheskikh protsessov, 2, 2021, 80–95

[11] Ushakova O.V., “Criteria for hexahedral cell classification”, Appl. Numer. Math., 127 (2018), 18–39

[12] Serezhnikova T.I., Sidorov A.F., and Ushakova O.V., “On one method of construction of optimal curvilinear grids and its applications”, Sov. J. Numer. Anal. and Math. Modelling, 4:2 (1989), 137–155

[13] Khairullina O.B., Sidorov A.F., and Ushakova O.V., “Variational methods of construction of optimal grids”, Handbook of Grid Generation, Ch. IV, eds. J.F. Thompson, B.K. Soni, N.P. Weatherill, 1999, 36-1–36-25

[14] Liseikin V.D., “Obzor metodov postroeniya strukturnykh adaptivnykh setok”, Zhurn. vychisl. matem. i mat. fiziki, 36:1 (1996), 3–41

[15] Bronina T.N., “Algoritmy postroeniya nachalnykh trekhmernykh strukturirovannykh setok dlya oblastei vrascheniya”, Tr. IMM UrO RAN, 14, no. 1, 2008, 3–10