A posteriori error majorants for numerical solutions of plate bending problems on a Winkler basis
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 26 (2023) no. 1, pp. 43-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the mixed finite element method for the equation $\Delta\Delta u+\kappa^2u=f$, $x\in\Omega$, with boundary conditions $u=\partial u/\partial\nu=0$ on $\partial\Omega$, where $\nu$ is the normal to the boundary and $\kappa\geqslant0$ is an arbitrary constant on each finite element. At $\kappa\equiv0$ residual type a posteriori error bounds for the mixed Ciarlet-Raviart method were derived by several authors at the use of different error norms. The bounds, termed sometimes a posteriori functional error majorants, seem to be less dependent on the constants in the general approximation bounds and are more flexible and adaptable for attaining higher accuracy at practical implementation. In this paper, we present a posteriori functional error majorants for the mixed Ciarlet-Raviart method in the case of $\kappa\ne0$ and having large jumps. Robustness and sharpness of the bounds are approved by the lower bounds of local efficiency.
@article{SJVM_2023_26_1_a3,
     author = {V. G. Korneev},
     title = {A posteriori error majorants for numerical solutions of plate bending problems on a {Winkler} basis},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {43--55},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2023_26_1_a3/}
}
TY  - JOUR
AU  - V. G. Korneev
TI  - A posteriori error majorants for numerical solutions of plate bending problems on a Winkler basis
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2023
SP  - 43
EP  - 55
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2023_26_1_a3/
LA  - ru
ID  - SJVM_2023_26_1_a3
ER  - 
%0 Journal Article
%A V. G. Korneev
%T A posteriori error majorants for numerical solutions of plate bending problems on a Winkler basis
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2023
%P 43-55
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2023_26_1_a3/
%G ru
%F SJVM_2023_26_1_a3
V. G. Korneev. A posteriori error majorants for numerical solutions of plate bending problems on a Winkler basis. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 26 (2023) no. 1, pp. 43-55. http://geodesic.mathdoc.fr/item/SJVM_2023_26_1_a3/

[1] Argyris J.H., Fried I., and Scharpf D.W., “The TUBA family of plate elements for the matrix displacement method”, J. Royal Aeronautical Society, 72:692 (1968), 701–709

[2] Bacuta C., Bramble J.H., and Pasciak J.E., “Shift theorems for the biharmonic Dirichlet problem”, Recent Progress in Computational and Applied PDES, Proc. Intern. Conf. (Zhangjiajie, July, 2001), eds. T.F. Chan, Y. Huang, T. Tang, J. Xu, L.-A. Ying, Springer, Boston, MA, 2002

[3] Brenner S.C., Sung L.-Y., “$C^0$ interior penalty methods for fourth order elliptic boundary value problems on polygonal domains”, J. Sci. Comput., 22/23 (2005), 83–118

[4] Brenner S.C., Gudi T.S., and Sung L.-Y., “An a posteriori error estimator for a quadratic interior penalty method for the biharmonic problem”, IMA J. Numer. Anal., 30 (2010), 777–798

[5] Ciarlet P., The finite element method for elliptic problems, North-Holland Publishing Company, Amsterdam–New York–Oxford, 1978

[6] Charbonneau A., Dossou K., and Pierre R., “A residual-based a posteriori error estimator for the Ciarlet-Raviart formulation of the first biharmonic problem”, Numer. Methods Partial Different. Eq., 13:1 (1997), 93–111

[7] Du S., Lin R., Zhang Zh., “Residual-based a posteriori error estimators for mixed finite element methods for fourth order elliptic singularly perturbed problems”, J. Comp. and Appl. Math., 412 (2022) | DOI

[8] Gudi T., “Residual-based a posteriori error estimator for the mixed finite element approximation of biharmonic equation”, Numer. Methods Partial Different. Eq., 27 (2011), 315–328

[9] Korneev V.G., “A note on a posteriori error bounds for numerical solutions of elliptic equations with piece wise constant reaction coefficient having large jumps”, Comput. Math. and Math. Physics, 60:11 (2020), 1754–1760

[10] Korneev V., “A posteriori error bounds for classical and mixed FEM's for 4th-order elliptic equations with piece wise constant reaction coefficient having large jumps”, J. Physics: Conf. Series, 1715 (2021), 012030

[11] Verfurth R.A., Posteriori Error Estimation Techniques for Finite Element Methods, University Press, Oxford, 2013

[12] Xu J., Zhang Zh., “Analysis of recovery type a posteriori error estimators for mildly structured grids”, Math. Comp., 73 (2004), 1139–1152

[13] Zienkiewicz O.C., The Finite Element Method in Engineering Science, McGraw-Hill, London, 1971

[14] Zienkiewicz O.C., and Zhu J.Z., “The superconvergence patch recovery and a posteriori error estimates. Part 1: The recovery technique”, Intern. J. Numer. Methods Engineering, 33 (1992), 1331–1364

[15] Korneev V.G., “O postroenii variatsionno-raznostnykh skhem vysokogo poryadka tochnosti”, Vestnik Leningradskogo Universiteta, 25:19 (1970), 28–40

[16] Korneev V.G., “Iteratsionnye metody resheniya sistem algebraicheskikh uravnenii metoda konechnykh elementov”, Zhurn. vychisl. matem. i mat. fiziki, 17:5 (1977), 1213–1233

[17] Korneev V.G., Skhemy metoda konechnykh elementov vysokikh poryadkov tochnosti, Izd-vo Leningradskogo gos. un-ta, L., 1977

[18] Korneev V.G., Khusanov K.A., “Krivolineinye konechnye elementy klassa $C^1$ s singulyarnymi koordinatnymi funktsiyami”, Diff. uravneniya, 22:12 (1986), 2144–2157