A local ensemble data assimilation algorithm for nonlinear geophysical models
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 26 (2023) no. 1, pp. 27-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

For optimal estimation of quantities of interest from observational data and a model (optimal filtering problem) in the nonlinear case, a particle method based on a Bayesian approach can be used. A disadvantage of the classical particle filter is that the observations are used only to find the weight coefficients with which the sum of the particles is calculated when determining an estimate. The present article considers an approach to solving the problem of nonlinear filtering which uses a representation of the posterior distribution density of the quantity being estimated as a sum with weights of Gaussian distribution densities. It is well-known from filtration theory that if a distribution density is a sum with weights of Gaussian functions, the optimal estimate will be a sum with weights of estimates calculated by the Kalman filter formulas. The present article proposes a method for solving the problem of nonlinear filtering based on this approach. An ensemble $\pi$-algorithm proposed earlier by the author is used to implement the method. The ensemble $\pi$-algorithm in this new method is used to obtain an ensemble corresponding to the distribution density at the analysis step. This is a stochastic ensemble Kalman filter which is local as well. Therefore, it can be used in high-dimensional geophysical models.
@article{SJVM_2023_26_1_a2,
     author = {E. G. Klimova},
     title = {A local ensemble data assimilation algorithm for nonlinear geophysical models},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {27--42},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2023_26_1_a2/}
}
TY  - JOUR
AU  - E. G. Klimova
TI  - A local ensemble data assimilation algorithm for nonlinear geophysical models
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2023
SP  - 27
EP  - 42
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2023_26_1_a2/
LA  - ru
ID  - SJVM_2023_26_1_a2
ER  - 
%0 Journal Article
%A E. G. Klimova
%T A local ensemble data assimilation algorithm for nonlinear geophysical models
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2023
%P 27-42
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2023_26_1_a2/
%G ru
%F SJVM_2023_26_1_a2
E. G. Klimova. A local ensemble data assimilation algorithm for nonlinear geophysical models. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 26 (2023) no. 1, pp. 27-42. http://geodesic.mathdoc.fr/item/SJVM_2023_26_1_a2/

[1] Klimova E.G., “Stokhasticheskii ansamblevyi filtr Kalmana s transformatsiei ansamblya vozmuschenii”, Sib. zhurn. vychisl. matematiki, 22:1 (2019), 27–40

[2] Anderson D.L., Anderson S.L., “A Monte-Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts”, Monthly Weather Review, 127 (2019), 2741–2758

[3] Anderson B.D., Moore J.B., Optimal filtering, Prentice-Hall, New Jersey, 1979

[4] Bengtsson T., Snyder C., Nychka D., “Toward a nonlinear ensemble filter for high-dimensional systems”, J. Geophysical Research, 2003 | DOI

[5] Carpenter J., Clifford P., Fearnhead P., “Improved particle filter for nonlinear problems”, IEE Proc. Radar (Sonar Navig, 1999) | DOI

[6] Carrassi A., Bocquet M., Bertino L., Evensen G., “Data assimilation in the geosciences: An overview of methods, issues and perspectives”, Wiley interdisciplinary reviews: Climate Change, 2018 | DOI

[7] Evensen G., Data assimilation. The ensemble Kalman filter, Springer-Verlag, Berlin–Heidelberg, 2009

[8] Evensen G., “Analysis of iterative ensemble smoother for solving inverse problems”, Computational Geosciences, 22 (2019), 885–908 | DOI

[9] Frei M., Kunsch H.R., “Bridging the ensemble Kalman and particle filter”, Biometrika, 100:4 (2013), 781–800 | DOI

[10] Hoteit I., Pham D.-T., Triantafyllou G., Korres G., “A new approximate solution of the optimal nonlinear filter for data assimilation in meteorology and oceanography”, Monthly Weather Review, 138 (2008), 317–334

[11] Houtekamer H.L. Zhang F., “Review of the ensemble Kalman filter for atmospheric data assimilation”, Monthly Weather Review, 144 (2016), 4489–4532

[12] Hunt B.R., Kostelich E.J., Szunyogh I., “Efficient data assimilation for statiotemporal chaos: A local ensemble transform Kalman filter”, Physica D, 230 (2007), 112–126

[13] Jazwinski A.H., Stochastic processes and filtering theory, Academic Press, New York, 1970

[14] Klimova E., “A suboptimal data assimilation algorithm based on the ensemble Kalman filter”, Quarterly Journal of the Royal Meteorological Society, 138 (2012), 2079–2085

[15] Klimova E.G., “Bayesian approach to data assimilation based on ensembles of forecasts and observations”, IOP Conf. Series: Earth and Environmental Science, 2019 | DOI

[16] Lorenz E.N., Emanuel K.A., “Optimal sites for supplementary weather observations: simulation with a small model”, Journal of the Atmospheric Sciences, 55 (1998), 319–414

[17] Nakamura G., Potthast R., Inverse Modeling, 2015 | DOI

[18] Poterjoy J., “A localized particle filter for high-dimensional nonlinear systems”, Monthly Weather Review, 144 (2016), 59–76 | DOI

[19] Potthast R., Walter A., Rhodin A., “A localized adaptive particle filter within an operational NWP Framework”, Monthly Weather Review, 147 (2019), 345–362 | DOI

[20] Robert S., Leuenberger D., Kunsch H.R., “A local ensemble transform Kalman particle filter for convective scale data assimilation”, Quarterly Journal of the Royal Meteorological Society, 144 (2018), 1279–1296 | DOI

[21] Snyder C., Bengtsson T., Morzfeld M., “Performance bounds for particle filters using the optimal proposal”, Monthly Weather Review, 143 (2015), 4750–4761 | DOI

[22] Stordal A.S., Karlsen H.A., N?vdal G., Skaug H.J., Valles B., “Bridging the ensemble Kalman filter and particle filter: the adaptive Gaussian mixture filte”, Computational Geosciences, 15 (2011), 293–305 | DOI

[23] van Leeuwen P.J., Kunsch H.R., Nerger L., Potthast R., Reich S., “Particle filters for high-dimensional geoscience applications: A review”, Quarterly Journal of the Royal Meteorological Society, 145 (2019), 2335–2365 | DOI

[24] Vetra-Carvalno S., van Leeuwen P.J., Nerger L. et al., “State-of-the-art stochastic data assimilation methods for high-dimensional non-Gaussian problems”, Tellus A, 70 (2018), 1–43 | DOI