Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2023_26_1_a2, author = {E. G. Klimova}, title = {A local ensemble data assimilation algorithm for nonlinear geophysical models}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {27--42}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2023_26_1_a2/} }
TY - JOUR AU - E. G. Klimova TI - A local ensemble data assimilation algorithm for nonlinear geophysical models JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2023 SP - 27 EP - 42 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2023_26_1_a2/ LA - ru ID - SJVM_2023_26_1_a2 ER -
E. G. Klimova. A local ensemble data assimilation algorithm for nonlinear geophysical models. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 26 (2023) no. 1, pp. 27-42. http://geodesic.mathdoc.fr/item/SJVM_2023_26_1_a2/
[1] Klimova E.G., “Stokhasticheskii ansamblevyi filtr Kalmana s transformatsiei ansamblya vozmuschenii”, Sib. zhurn. vychisl. matematiki, 22:1 (2019), 27–40
[2] Anderson D.L., Anderson S.L., “A Monte-Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts”, Monthly Weather Review, 127 (2019), 2741–2758
[3] Anderson B.D., Moore J.B., Optimal filtering, Prentice-Hall, New Jersey, 1979
[4] Bengtsson T., Snyder C., Nychka D., “Toward a nonlinear ensemble filter for high-dimensional systems”, J. Geophysical Research, 2003 | DOI
[5] Carpenter J., Clifford P., Fearnhead P., “Improved particle filter for nonlinear problems”, IEE Proc. Radar (Sonar Navig, 1999) | DOI
[6] Carrassi A., Bocquet M., Bertino L., Evensen G., “Data assimilation in the geosciences: An overview of methods, issues and perspectives”, Wiley interdisciplinary reviews: Climate Change, 2018 | DOI
[7] Evensen G., Data assimilation. The ensemble Kalman filter, Springer-Verlag, Berlin–Heidelberg, 2009
[8] Evensen G., “Analysis of iterative ensemble smoother for solving inverse problems”, Computational Geosciences, 22 (2019), 885–908 | DOI
[9] Frei M., Kunsch H.R., “Bridging the ensemble Kalman and particle filter”, Biometrika, 100:4 (2013), 781–800 | DOI
[10] Hoteit I., Pham D.-T., Triantafyllou G., Korres G., “A new approximate solution of the optimal nonlinear filter for data assimilation in meteorology and oceanography”, Monthly Weather Review, 138 (2008), 317–334
[11] Houtekamer H.L. Zhang F., “Review of the ensemble Kalman filter for atmospheric data assimilation”, Monthly Weather Review, 144 (2016), 4489–4532
[12] Hunt B.R., Kostelich E.J., Szunyogh I., “Efficient data assimilation for statiotemporal chaos: A local ensemble transform Kalman filter”, Physica D, 230 (2007), 112–126
[13] Jazwinski A.H., Stochastic processes and filtering theory, Academic Press, New York, 1970
[14] Klimova E., “A suboptimal data assimilation algorithm based on the ensemble Kalman filter”, Quarterly Journal of the Royal Meteorological Society, 138 (2012), 2079–2085
[15] Klimova E.G., “Bayesian approach to data assimilation based on ensembles of forecasts and observations”, IOP Conf. Series: Earth and Environmental Science, 2019 | DOI
[16] Lorenz E.N., Emanuel K.A., “Optimal sites for supplementary weather observations: simulation with a small model”, Journal of the Atmospheric Sciences, 55 (1998), 319–414
[17] Nakamura G., Potthast R., Inverse Modeling, 2015 | DOI
[18] Poterjoy J., “A localized particle filter for high-dimensional nonlinear systems”, Monthly Weather Review, 144 (2016), 59–76 | DOI
[19] Potthast R., Walter A., Rhodin A., “A localized adaptive particle filter within an operational NWP Framework”, Monthly Weather Review, 147 (2019), 345–362 | DOI
[20] Robert S., Leuenberger D., Kunsch H.R., “A local ensemble transform Kalman particle filter for convective scale data assimilation”, Quarterly Journal of the Royal Meteorological Society, 144 (2018), 1279–1296 | DOI
[21] Snyder C., Bengtsson T., Morzfeld M., “Performance bounds for particle filters using the optimal proposal”, Monthly Weather Review, 143 (2015), 4750–4761 | DOI
[22] Stordal A.S., Karlsen H.A., N?vdal G., Skaug H.J., Valles B., “Bridging the ensemble Kalman filter and particle filter: the adaptive Gaussian mixture filte”, Computational Geosciences, 15 (2011), 293–305 | DOI
[23] van Leeuwen P.J., Kunsch H.R., Nerger L., Potthast R., Reich S., “Particle filters for high-dimensional geoscience applications: A review”, Quarterly Journal of the Royal Meteorological Society, 145 (2019), 2335–2365 | DOI
[24] Vetra-Carvalno S., van Leeuwen P.J., Nerger L. et al., “State-of-the-art stochastic data assimilation methods for high-dimensional non-Gaussian problems”, Tellus A, 70 (2018), 1–43 | DOI