Stability domains of an implicit method for the numerical solution of Abel type integral algebraic equations
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 26 (2023) no. 1, pp. 1-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article is devoted to a study of the properties of an implicit method for Abel type integral algebraic equations. An Abel type integral equation with stiff components is used for examining the properties of these methods and the stability domains are constructed. Numerical calculations confirming the results obtained are performed. In this article, a fractional «stiff» problem is proposed to study the stability of the mathematical objects considered.
@article{SJVM_2023_26_1_a0,
     author = {O. S. Budnikova and M. N. Botoroeva and G. K. Sokolova},
     title = {Stability domains of an implicit method for the numerical solution of {Abel} type integral algebraic equations},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {1--16},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2023_26_1_a0/}
}
TY  - JOUR
AU  - O. S. Budnikova
AU  - M. N. Botoroeva
AU  - G. K. Sokolova
TI  - Stability domains of an implicit method for the numerical solution of Abel type integral algebraic equations
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2023
SP  - 1
EP  - 16
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2023_26_1_a0/
LA  - ru
ID  - SJVM_2023_26_1_a0
ER  - 
%0 Journal Article
%A O. S. Budnikova
%A M. N. Botoroeva
%A G. K. Sokolova
%T Stability domains of an implicit method for the numerical solution of Abel type integral algebraic equations
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2023
%P 1-16
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2023_26_1_a0/
%G ru
%F SJVM_2023_26_1_a0
O. S. Budnikova; M. N. Botoroeva; G. K. Sokolova. Stability domains of an implicit method for the numerical solution of Abel type integral algebraic equations. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 26 (2023) no. 1, pp. 1-16. http://geodesic.mathdoc.fr/item/SJVM_2023_26_1_a0/

[1] Samko S.G., Kilbas A.A., Marichev O.I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987

[2] Polyanin A.D., Manzhirov A.V., Handbook of Integral Equations, CRC Press, Boca Raton, 1998

[3] Tenreiro Machado J.A., Galhano A.M., Trujillo J.J., “Science metrics on fractional calculus development since 1966”, Fractional Calculus and Applied Analysis, 16:2 (2013), 479–500

[4] Gorenflo R., Vessella S., Abel Integral Equations: Analysis and Application, Springer-Verlag, Berlin-Heidelberg, 1991

[5] Brunner H., Volterra Integral Equations: an Introduction to Theory and Applications, Cambridge University Press, Cambridge, 2017

[6] Lubich Ch., “A stability analysis of convolution quadratures for Abel-Volterra integral equations”, IMA J. of Numerical Analysis, 6 (1986), 87–101

[7] Garrappa R., “On linear stability of predictor-corrector algorithms for fractional differential equations”, Inter. J. of Computer Mathematics, 87:10 (2010), 2281–2290

[8] Brunner H., Bulatov M.V., “On singular systems of integral equations with weakly singular kernels”, Proc. of the 11-th Baikal Intern. School Seminar «Optimization Methods and their Applications», ESI SB RAS, Irkutsk, 1998, 64–67

[9] Bulatov M.V., Lima P.M., Weinmuller E.B., “Existence and uniqueness of solutions to weakly singular integral-algebraic and integro-differential equations”, Central European J. of Mathematics, 12:2 (2014), 308–321

[10] Pishbin S., Ghoreishi F., Hadizadeh M., “The semi-explicit Volterra integral algebraic equations with weakly singular kernel: the numerical treatments”, J. Comput. Appl. Math., 245:1 (2013), 121–132

[11] Sajjadi S.A., Pishdin S., “Convergence analysis of the product integration method for solving the fourth kind integral equations with weakly singular kernels”, Numerical Algorithms, 86 (2021), 25–54

[12] Bulatov M.V., Budnikova O.S., “Chislennoe reshenie integro-algebraicheskikh uravnenii so slaboi osobennostyu v yadre k-shagovymi metodami”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 13 (2015), 3–15

[13] Orlov S., Grunwald L., Shemetova V., “Initial boundary value problems for Sobolev type equations of hereditary continuum mechanics”, J. of Physics: Conference Series, 2019 | DOI

[14] Kolk M., Pedas A., “Numerical solution of Volterra integral equations with weakly singular kernels which may have a boundary singularity”, Mathematical Modelling and Analysis, 14:1 (2009), 79–89

[15] Chistyakov V.F., “O singulyarnykh sistemakh obyknovennykh differentsialnykh uravnenii i ikh integralnykh analogakh”, Funktsii Lyapunova i ikh primeneniya, Nauka, Novosibirsk, 1987

[16] Brunner H., Collocation Methods for Volterra Integral and Related Functional Equations, Cambridge Unversity Press, Cambridge, 2004

[17] Weiss R.A., Anderssen R.S., “Product integration methods for a class of singular first kind Volterra equations”, Numer. Math., 18:5 (1972), 442–456

[18] Novikov E.A., Yavnye metody dlya zhestkikh sistem, Nauka, Novosibirsk, 1997

[19] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999

[20] Kholl Dzh., Uatt Dzh., Sovremennye chislennye metody resheniya obyknovennykh differentsialnykh uravnenii, Mir, M., 1979

[21] Uchaikin V.V., “Drobno-differentsialnye modeli v gidromekhanike”, Izv. vuzov. Prikladnaya nelineinaya dinamika, 27:1 (2019), 5–40

[22] Sedletskii A.M., “Neasimptoticheskie svoistva kornei funktsii tipa Mittag-Lefflera”, Matematicheskie zametki, 75:3 (2004), 405–420

[23] Popov A.Yu., Sedletskii A.M., “Raspredelenie kornei funktsii Mittag-Lefflera”, Sovremennaya matematika. Fundamentalnye napravleniya, 40, 2011, 3–171

[24] Bulatov M.V., Budnikova O.S., “Issledovanie mnogoshagovykh metodov dlya resheniya integroalgebraicheskikh uravnenii: postroenie oblastei ustoichivosti”, Zhurn. vychisl. matem. i mat. fiziki, 53:9 (2013), 1448–1459

[25] Boyarintsev Yu.E., Orlova I.V., Puchki matrits i algebro-differentsialnye sistemy, Nauka, Novosibirsk, 2006