Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2023_26_1_a0, author = {O. S. Budnikova and M. N. Botoroeva and G. K. Sokolova}, title = {Stability domains of an implicit method for the numerical solution of {Abel} type integral algebraic equations}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {1--16}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2023_26_1_a0/} }
TY - JOUR AU - O. S. Budnikova AU - M. N. Botoroeva AU - G. K. Sokolova TI - Stability domains of an implicit method for the numerical solution of Abel type integral algebraic equations JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2023 SP - 1 EP - 16 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2023_26_1_a0/ LA - ru ID - SJVM_2023_26_1_a0 ER -
%0 Journal Article %A O. S. Budnikova %A M. N. Botoroeva %A G. K. Sokolova %T Stability domains of an implicit method for the numerical solution of Abel type integral algebraic equations %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2023 %P 1-16 %V 26 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2023_26_1_a0/ %G ru %F SJVM_2023_26_1_a0
O. S. Budnikova; M. N. Botoroeva; G. K. Sokolova. Stability domains of an implicit method for the numerical solution of Abel type integral algebraic equations. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 26 (2023) no. 1, pp. 1-16. http://geodesic.mathdoc.fr/item/SJVM_2023_26_1_a0/
[1] Samko S.G., Kilbas A.A., Marichev O.I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987
[2] Polyanin A.D., Manzhirov A.V., Handbook of Integral Equations, CRC Press, Boca Raton, 1998
[3] Tenreiro Machado J.A., Galhano A.M., Trujillo J.J., “Science metrics on fractional calculus development since 1966”, Fractional Calculus and Applied Analysis, 16:2 (2013), 479–500
[4] Gorenflo R., Vessella S., Abel Integral Equations: Analysis and Application, Springer-Verlag, Berlin-Heidelberg, 1991
[5] Brunner H., Volterra Integral Equations: an Introduction to Theory and Applications, Cambridge University Press, Cambridge, 2017
[6] Lubich Ch., “A stability analysis of convolution quadratures for Abel-Volterra integral equations”, IMA J. of Numerical Analysis, 6 (1986), 87–101
[7] Garrappa R., “On linear stability of predictor-corrector algorithms for fractional differential equations”, Inter. J. of Computer Mathematics, 87:10 (2010), 2281–2290
[8] Brunner H., Bulatov M.V., “On singular systems of integral equations with weakly singular kernels”, Proc. of the 11-th Baikal Intern. School Seminar «Optimization Methods and their Applications», ESI SB RAS, Irkutsk, 1998, 64–67
[9] Bulatov M.V., Lima P.M., Weinmuller E.B., “Existence and uniqueness of solutions to weakly singular integral-algebraic and integro-differential equations”, Central European J. of Mathematics, 12:2 (2014), 308–321
[10] Pishbin S., Ghoreishi F., Hadizadeh M., “The semi-explicit Volterra integral algebraic equations with weakly singular kernel: the numerical treatments”, J. Comput. Appl. Math., 245:1 (2013), 121–132
[11] Sajjadi S.A., Pishdin S., “Convergence analysis of the product integration method for solving the fourth kind integral equations with weakly singular kernels”, Numerical Algorithms, 86 (2021), 25–54
[12] Bulatov M.V., Budnikova O.S., “Chislennoe reshenie integro-algebraicheskikh uravnenii so slaboi osobennostyu v yadre k-shagovymi metodami”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 13 (2015), 3–15
[13] Orlov S., Grunwald L., Shemetova V., “Initial boundary value problems for Sobolev type equations of hereditary continuum mechanics”, J. of Physics: Conference Series, 2019 | DOI
[14] Kolk M., Pedas A., “Numerical solution of Volterra integral equations with weakly singular kernels which may have a boundary singularity”, Mathematical Modelling and Analysis, 14:1 (2009), 79–89
[15] Chistyakov V.F., “O singulyarnykh sistemakh obyknovennykh differentsialnykh uravnenii i ikh integralnykh analogakh”, Funktsii Lyapunova i ikh primeneniya, Nauka, Novosibirsk, 1987
[16] Brunner H., Collocation Methods for Volterra Integral and Related Functional Equations, Cambridge Unversity Press, Cambridge, 2004
[17] Weiss R.A., Anderssen R.S., “Product integration methods for a class of singular first kind Volterra equations”, Numer. Math., 18:5 (1972), 442–456
[18] Novikov E.A., Yavnye metody dlya zhestkikh sistem, Nauka, Novosibirsk, 1997
[19] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999
[20] Kholl Dzh., Uatt Dzh., Sovremennye chislennye metody resheniya obyknovennykh differentsialnykh uravnenii, Mir, M., 1979
[21] Uchaikin V.V., “Drobno-differentsialnye modeli v gidromekhanike”, Izv. vuzov. Prikladnaya nelineinaya dinamika, 27:1 (2019), 5–40
[22] Sedletskii A.M., “Neasimptoticheskie svoistva kornei funktsii tipa Mittag-Lefflera”, Matematicheskie zametki, 75:3 (2004), 405–420
[23] Popov A.Yu., Sedletskii A.M., “Raspredelenie kornei funktsii Mittag-Lefflera”, Sovremennaya matematika. Fundamentalnye napravleniya, 40, 2011, 3–171
[24] Bulatov M.V., Budnikova O.S., “Issledovanie mnogoshagovykh metodov dlya resheniya integroalgebraicheskikh uravnenii: postroenie oblastei ustoichivosti”, Zhurn. vychisl. matem. i mat. fiziki, 53:9 (2013), 1448–1459
[25] Boyarintsev Yu.E., Orlova I.V., Puchki matrits i algebro-differentsialnye sistemy, Nauka, Novosibirsk, 2006