Stability domains of explicit multistep
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 4, pp. 417-428
Voir la notice de l'article provenant de la source Math-Net.Ru
A new algorithm is proposed for obtaining stability domains of multistep numerical schemes. The algorithm is based on Bernoulli’s algorithm for computing the greatest in magnitude root of a polynomial with
complex coefficients and the Dandelin–Lobachevsky–Graeffe method for squaring the roots. Numerical results
on the construction of stability domains of Adams–Bashforth methods of order 3–11 are given.
@article{SJVM_2022_25_4_a6,
author = {I. V. Kireev and A. E. Novikov and E. A. Novikov},
title = {Stability domains of explicit multistep},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {417--428},
publisher = {mathdoc},
volume = {25},
number = {4},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2022_25_4_a6/}
}
TY - JOUR AU - I. V. Kireev AU - A. E. Novikov AU - E. A. Novikov TI - Stability domains of explicit multistep JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2022 SP - 417 EP - 428 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2022_25_4_a6/ LA - ru ID - SJVM_2022_25_4_a6 ER -
I. V. Kireev; A. E. Novikov; E. A. Novikov. Stability domains of explicit multistep. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 4, pp. 417-428. http://geodesic.mathdoc.fr/item/SJVM_2022_25_4_a6/