Stability domains of explicit multistep
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 4, pp. 417-428.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new algorithm is proposed for obtaining stability domains of multistep numerical schemes. The algorithm is based on Bernoulli’s algorithm for computing the greatest in magnitude root of a polynomial with complex coefficients and the Dandelin–Lobachevsky–Graeffe method for squaring the roots. Numerical results on the construction of stability domains of Adams–Bashforth methods of order 3–11 are given.
@article{SJVM_2022_25_4_a6,
     author = {I. V. Kireev and A. E. Novikov and E. A. Novikov},
     title = {Stability domains of explicit multistep},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {417--428},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2022_25_4_a6/}
}
TY  - JOUR
AU  - I. V. Kireev
AU  - A. E. Novikov
AU  - E. A. Novikov
TI  - Stability domains of explicit multistep
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2022
SP  - 417
EP  - 428
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2022_25_4_a6/
LA  - ru
ID  - SJVM_2022_25_4_a6
ER  - 
%0 Journal Article
%A I. V. Kireev
%A A. E. Novikov
%A E. A. Novikov
%T Stability domains of explicit multistep
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2022
%P 417-428
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2022_25_4_a6/
%G ru
%F SJVM_2022_25_4_a6
I. V. Kireev; A. E. Novikov; E. A. Novikov. Stability domains of explicit multistep. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 4, pp. 417-428. http://geodesic.mathdoc.fr/item/SJVM_2022_25_4_a6/

[1] E. Hairer, G. Wanner, S. P. Norsett, Solving Ordinary Differential Equations I: Nonstiff problems, Springer Series in Computational Mathematics, 8), 2nd ed. 3rd corrected printing, Springer, Berlin, 2008 | DOI

[2] E. A. Novikov, Yu. V. Shornikov, Kompyuternoe modelirovanie zhestkikh gibridnykh sistem, Izd-vo NGTU, Novosibirsk, 2013

[3] V. A. Avdyushev, Chislennoe modelirovanie orbit nebesnykh tel, Izdatelskii dom TGU, Tomsk, 2015

[4] V. V. Abramov, “Primenenie metodov Adamsa k resheniyu uravnenii dvizheniya bolshikh planet, Luny i Solntsa”, Matem. modelirovanie i kraev. zadachi, 2006, no. 3, 13–19

[5] G. Dahlquist, “A special stability problem for linear multistep methods”, BIT Numerical Mathematics, 3 (1963), 27–43

[6] A. O. Gelfond, Ischislenie konechnykh raznostei, 5-e izd., Knizhnyi dom «LIBROKOM», M., 2012

[7] J. Butcher, Numerical Methods for Ordinary Differential Equations, John Wiley Sons Ltd, 2016 | DOI

[8] J. M. McNamee, Numerical Methods for Roots of Polynomials, v. I, Studies in Computational Mathematics, 14, Elsevier, 2007

[9] J. M. McNamee, V. Y. Pan, Numerical Methods for Roots of Polynomials, v. II, Studies in Computational Mathematics, 16, Elsevier, 2013 | DOI

[10] A. G. Kurosh, Kurs vysshei algebry, uchebnik dlya studentov vuzov, 19-e izd., ster., Izd-vo «Lan», SPb., 2013

[11] F. B. Hildebrand, Introduction to Numerical Analysis, 2nd ed., Dover Publications, 1987

[12] V. L. Zaguskin, Handbook of Numerical Methods for the Solution of Algebraic and Transcendental Equations, Elsevier, 1961

[13] A.S. Householder, “Dandelin, Lobacevskii, or Graeffe”, The American Mathematical Monthly, 66:6 (1959), 464–466 | DOI