New convergence mode for the generalized spectrum
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 4, pp. 409-416
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we introduce a new convergence mode to deal with the generalized spectrum approximation
of two bounded operators. This new technique is obtained by extending the well-known $\nu$-convergence used in
the case of classical spectrum approximation. This new vision allows us to see the $\nu$-convergence assumption
as a special case of our new method compared to the hypotheses needed in old methods, those required in
this paper are weaker. In addition, we prove that the property $U$ holds, which solves the spectral pollution
problem arising in spectrum approximation of unbounded operator.
@article{SJVM_2022_25_4_a5,
author = {S. Kamouche and H. Guebbai},
title = {New convergence mode for the generalized spectrum},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {409--416},
publisher = {mathdoc},
volume = {25},
number = {4},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2022_25_4_a5/}
}
S. Kamouche; H. Guebbai. New convergence mode for the generalized spectrum. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 4, pp. 409-416. http://geodesic.mathdoc.fr/item/SJVM_2022_25_4_a5/