New convergence mode for the generalized spectrum
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 4, pp. 409-416.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we introduce a new convergence mode to deal with the generalized spectrum approximation of two bounded operators. This new technique is obtained by extending the well-known $\nu$-convergence used in the case of classical spectrum approximation. This new vision allows us to see the $\nu$-convergence assumption as a special case of our new method compared to the hypotheses needed in old methods, those required in this paper are weaker. In addition, we prove that the property $U$ holds, which solves the spectral pollution problem arising in spectrum approximation of unbounded operator.
@article{SJVM_2022_25_4_a5,
     author = {S. Kamouche and H. Guebbai},
     title = {New convergence mode for the generalized spectrum},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {409--416},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2022_25_4_a5/}
}
TY  - JOUR
AU  - S. Kamouche
AU  - H. Guebbai
TI  - New convergence mode for the generalized spectrum
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2022
SP  - 409
EP  - 416
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2022_25_4_a5/
LA  - ru
ID  - SJVM_2022_25_4_a5
ER  - 
%0 Journal Article
%A S. Kamouche
%A H. Guebbai
%T New convergence mode for the generalized spectrum
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2022
%P 409-416
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2022_25_4_a5/
%G ru
%F SJVM_2022_25_4_a5
S. Kamouche; H. Guebbai. New convergence mode for the generalized spectrum. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 4, pp. 409-416. http://geodesic.mathdoc.fr/item/SJVM_2022_25_4_a5/

[1] M. Ahues, A. Largillier, B. Limaye, Spectral Computations for Bounded Operators, CRC Press, 2001

[2] A. R. Aliev, E. H. Eyvazov, “On the discreteness of the spectrum of the magnetic Schrödinger operator”, J. Functional Analysis and Its Applications, 46 (2012), 305–307

[3] S. Aljawi, M. Marletta, “On the eigenvalues of spectral gaps of matrix-valued Schrödinger operators”, Numerical Algorithms, 86 (2021), 637–657

[4] A. Alonso-Rodriguez, J. Camano, R. Rodriguez, A. Valli, P. Venegas, “Correction to: finite element approximation of the spectrum of the curl operator in a multiply connected domain”, Foundations of Computational Mathematics, 19 (2019), 243–244

[5] K. E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, Cambridge University Press, 1996

[6] L. Boulton, “Spectral pollution and eigenvalue bounds”, Appl. Numerical Math., 99 (2016), 1–23 | DOI

[7] J. Breuer, S. Denisov, L. Eliaz, “On the essential spectrum of Schrödinger operators on trees”, Mathematical Physics, Analysis and Geometry, 21:33 (2018) | DOI

[8] V. M. Budnev, I. F. Ginzburg, G. V. Meledin, V. G. Serbo, “The two-photon particle production mechanism. Physical problems. Applications. Equivalent photon approximation”, Physics Reports, 15:4 (1975), 181–282

[9] E. Cances, V. Ehrlacher, Y. Maday, “Periodic Schrödinger operators with local defects and spectral pollution”, SIAM J. Numerical Analysis, 50:6 (2012), 3016–3035

[10] E. B. Davies, M. Plum, “Spectral pollution”, IMA J. Numerical Analysis, 24:3 (2004), 417–438 | DOI

[11] H. Guebbai, “Generalized spectrum approximation and numerical computation of eigenvalues for Schrödinger's operators”, Lobachevskii Journal of Mathematics, 34:1 (2013), 45–60 | DOI

[12] K. Haddadi, S. Muller, I. Bloch, “Validation of a bi-energetic spectrum approximation in bone mineral density measurement with a DXA digital twin”, 2021 IEEE 18th Intern. Symposium on Biomedical Imaging (ISBI), 2021, 380–384

[13] S. Kamouche, H. Guebbai, M. Ghiat, S. Segni, “Generalized quadratic spectrum approximation in bounded and unbounded cases”, J. Probl. Anal. Issues Anal., 10:28 (2021), 53–70

[14] A. Khellaf, H. Guebbai, “A note on generalized spectrum approximation”, Lobachevskii Journal of Mathematics, 39:9 (2018), 1388–1395 | DOI

[15] A. Khellaf, W. Merchela, H. Guebbai, “New sufficient conditions for the computation of generalized eigenvalues”, Russian Mathematics, 65:2 (2021), 65–68 | DOI

[16] K. Kitaura, K. Morokuma, “A new energy decomposition scheme for molecular interactions within the Hartree-Fock approximation”, Intern. J. of Quantum Chemistry, 10:2 (1976), 325–340

[17] A. M. Levin, “The spectrum of a perturbed operator associated with a hyperbolic toral authomorphism”, J. of Mathematical Sciences, 196 (2014), 187–191

[18] Z. Maozhu, J. Sun, A. Zettl, “The spectrum of singular Sturm-Liouville problems with eigenparameter dependent boundary conditions and its approximation”, Results in Mathematics, 63 (2013), 1311–1330

[19] S. M. Tashpulatov, “Structure of essential spectrum and discrete spectrum of the energy operator of five-electron systems in the Hubbard model-doublet states”, Conference proceedings Operator Theory and Differential Equations, eds. A.G. Kusraev, Z.D. Totieva, 2021, 275–301

[20] W. Thiel, “Semiempirical quantum-chemical methods”, Wiley Interdisciplinary Reviews: Computational Molecular Science, 4:2 (2014), 145–157