Solving the pure Neumann problem by a mixed finite element method
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 4, pp. 385-401.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper proposes a new method for the numerical solution of a pure Neumann problem for the diffusion equation in a mixed formulation. The method is based on the inclusion of a condition of unique solvability of the problem in one of the equations of the system with a subsequent decrease in its order by using a Lagrange multiplier. The unique solvability of the problem obtained and its equivalence to the original mixed formulation in a subspace are proved. The problem is approximated on the basis of a mixed finite element method. The unique solvability of the resulting saddle system of linear algebraic equations is investigated. Theoretical results are illustrated by computational experiments.
@article{SJVM_2022_25_4_a3,
     author = {M. I. Ivanov and I. A. Kremer and Yu. M. Laevsky},
     title = {Solving the pure {Neumann} problem by a mixed finite element method},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {385--401},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2022_25_4_a3/}
}
TY  - JOUR
AU  - M. I. Ivanov
AU  - I. A. Kremer
AU  - Yu. M. Laevsky
TI  - Solving the pure Neumann problem by a mixed finite element method
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2022
SP  - 385
EP  - 401
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2022_25_4_a3/
LA  - ru
ID  - SJVM_2022_25_4_a3
ER  - 
%0 Journal Article
%A M. I. Ivanov
%A I. A. Kremer
%A Yu. M. Laevsky
%T Solving the pure Neumann problem by a mixed finite element method
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2022
%P 385-401
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2022_25_4_a3/
%G ru
%F SJVM_2022_25_4_a3
M. I. Ivanov; I. A. Kremer; Yu. M. Laevsky. Solving the pure Neumann problem by a mixed finite element method. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 4, pp. 385-401. http://geodesic.mathdoc.fr/item/SJVM_2022_25_4_a3/

[1] D. W. Peaceman, Fundamentals of Numerical Reservoir Simulation, Elsevier, Amsterdam, 1977

[2] K. Aziz, A. Settari, Petroleum Reservoir Simulation, Applied Science Publishers, London, 1979

[3] G. Chavent, J. Jaffre, Mathematical Models and Finite Elements for Reservoir Simulation, Elsevier, Amsterdam, 1986

[4] O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New York, 1969

[5] V. Girault, P. A. Raviart, Finite Element Methods for Navier-Stokes Eequations, Springer-Verlag, 1986

[6] F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991

[7] M. Krjizhek, “On approximation of the Neumann problem by the penalty method”, Applications of Mathematics, 38:6 (1993), 459–469

[8] P. Bochev, R. B. Lehoucq, “On the finite element solution of the pure Neumann problem”, SIAM Revew, 47:1 (2005), 50–66

[9] X. Dai, “Finite element approximation of the pure Neumann problem using the iterative penalty method”, Applied Mathematics and Computation, 186 (2007), 1367–1373

[10] M. I. Ivanov, I. A. Kremer, M. V. Urev, “Solving the pure Neumann problem by a finite element method”, Numerical Analysis and Applications, 12:4 (2019), 359–371

[11] M. Steigemann, M. Fulland, “On the computation of the pure Neumann problem in 2-dimensional elasticity”, Intern. J. of Fracture, 146 (2007), 265–277

[12] I. A. Kremer, M. V. Urev, “A regularization method for stationary Maxwell equations in an inhomogeneous conducting medium”, Numerical Analysis and Applications, 2:2 (2009), 131–139

[13] I. A. Kremer, M. V. Urev, “Solution of a regularized problem for a stationary magnetic field in a nonhomogeneous conducting medium by a finite element method”, Numerical Analysis and Applications, 3:1 (2010), 25–38

[14] E. Savenkov, H. Andrae, O. Iliev, “An analysis of one regularization approach for solution of pure Neumann problem”, Berichte des Fraunhofer ITWM, 137 (2008), 1–27

[15] M. I. Ivanov, I. A. Kremer, Yu. M. Laevsky, “On the streamline upwind scheme of solution to the filtration problem”, Siberian Electronic Mathematical Reports, 16 (2019), 757–776

[16] D. Boffi, F. Brezzi, M. Fortin, Mixed Finite Element Methods and Applications, Springer-Verlag, Berlin–Heidelberg, 2013

[17] P. A. Raviart, J. M. Thomas, “A mixed finite element method for 2-nd order elliptic problems. Mathematical aspects of the finite element methods”, Mathematical Aspects of the Finite Element Method, Lecture Notes in Mathematics, 606, Springer-Verlag, New York, 1977

[18] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978

[19] V. V. Voevodin, Yu. A. Kuznetsov, Matritsy i vychisleniya, Nauka, M., 1984

[20] G. I. Barenblatt, I. P. Zheltov, I. N. Kochina, “Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks”, J. of Applied Mathematics and Mechanics, 24:5 (1960), 1286–1303

[21] J. E. Warren, P. J. Root, “The behavior of naturally fractured reservoirs”, Society of Petroleum Engineers J., 3:3 (1963), 245–255

[22] M. I. Ivanov, I. A. Kremer, Yu. M. Laevsky, “A computational model of fluid filtration in fractured porous media”, Numerical Analysis and Applications, 14:2 (2021), 126–144