Solving the pure Neumann problem by a mixed finite element method
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 4, pp. 385-401
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper proposes a new method for the numerical solution of a pure Neumann problem for the diffusion equation in a mixed formulation. The method is based on the inclusion of a condition of unique solvability of the problem in one of the equations of the system with a subsequent decrease in its order by using a Lagrange multiplier. The unique solvability of the problem obtained and its equivalence to the original mixed formulation in a subspace are proved. The problem is approximated on the basis of a mixed finite element method. The unique solvability of the resulting saddle system of linear algebraic equations is investigated. Theoretical results are illustrated by computational experiments.
@article{SJVM_2022_25_4_a3,
author = {M. I. Ivanov and I. A. Kremer and Yu. M. Laevsky},
title = {Solving the pure {Neumann} problem by a mixed finite element method},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {385--401},
publisher = {mathdoc},
volume = {25},
number = {4},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2022_25_4_a3/}
}
TY - JOUR AU - M. I. Ivanov AU - I. A. Kremer AU - Yu. M. Laevsky TI - Solving the pure Neumann problem by a mixed finite element method JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2022 SP - 385 EP - 401 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2022_25_4_a3/ LA - ru ID - SJVM_2022_25_4_a3 ER -
%0 Journal Article %A M. I. Ivanov %A I. A. Kremer %A Yu. M. Laevsky %T Solving the pure Neumann problem by a mixed finite element method %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2022 %P 385-401 %V 25 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2022_25_4_a3/ %G ru %F SJVM_2022_25_4_a3
M. I. Ivanov; I. A. Kremer; Yu. M. Laevsky. Solving the pure Neumann problem by a mixed finite element method. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 4, pp. 385-401. http://geodesic.mathdoc.fr/item/SJVM_2022_25_4_a3/