On the discretization of evolution $p$-bi-Laplace equation
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 4, pp. 371-383

Voir la notice de l'article provenant de la source Math-Net.Ru

This article discusses the mixed finite element method combined with backward-Euler method to study the hyperbolic $p$-bi-Laplace equation, where the existence and uniqueness of solution for discretized problem is shown in Lebesgue Sobolev spaces. The mixed formulation and the inf–sup condition are then given to prove the well posed of the scheme and the optimal a priori error estimates for fully discrete schemes is extracted. Finally, a numerical example is given to confirm the theoretical results obtained.
@article{SJVM_2022_25_4_a2,
     author = {M. Djaghout and A. Chaoui and K. Zennir},
     title = {On the discretization of evolution $p${-bi-Laplace} equation},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {371--383},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2022_25_4_a2/}
}
TY  - JOUR
AU  - M. Djaghout
AU  - A. Chaoui
AU  - K. Zennir
TI  - On the discretization of evolution $p$-bi-Laplace equation
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2022
SP  - 371
EP  - 383
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2022_25_4_a2/
LA  - ru
ID  - SJVM_2022_25_4_a2
ER  - 
%0 Journal Article
%A M. Djaghout
%A A. Chaoui
%A K. Zennir
%T On the discretization of evolution $p$-bi-Laplace equation
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2022
%P 371-383
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2022_25_4_a2/
%G ru
%F SJVM_2022_25_4_a2
M. Djaghout; A. Chaoui; K. Zennir. On the discretization of evolution $p$-bi-Laplace equation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 4, pp. 371-383. http://geodesic.mathdoc.fr/item/SJVM_2022_25_4_a2/