Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2022_25_4_a2, author = {M. Djaghout and A. Chaoui and K. Zennir}, title = {On the discretization of evolution $p${-bi-Laplace} equation}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {371--383}, publisher = {mathdoc}, volume = {25}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2022_25_4_a2/} }
TY - JOUR AU - M. Djaghout AU - A. Chaoui AU - K. Zennir TI - On the discretization of evolution $p$-bi-Laplace equation JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2022 SP - 371 EP - 383 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2022_25_4_a2/ LA - ru ID - SJVM_2022_25_4_a2 ER -
M. Djaghout; A. Chaoui; K. Zennir. On the discretization of evolution $p$-bi-Laplace equation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 4, pp. 371-383. http://geodesic.mathdoc.fr/item/SJVM_2022_25_4_a2/
[1] R. Alsaedi, A. Dhifli, A. Ghanmi, “Low perturbations of p-biharmonic equations with competing nonlinearities”, Complex Variables and Elliptic Equations, 66:4 (2021), 642–657
[2] I. Babus̄ka, J. Osborn, J. Pitkäranta, “Analysis of mixed methods using mesh dependent norms”, Math. Comp., 35:152 (1980), 1039–1062
[3] J. H. Bae, J. M. Kim, J. Lee, K. Park, “Existence of nontrivial weak solutions for p-biharmonic Kirchhoff-type equations”, Boundary Value Problems, 125 (2019), 1–17
[4] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Studies in Mathematics and its Applications, 4, North-Holland Publishing Co, Amsterdam, 1978
[5] H. Che, Y. Wang, Z. Zhou, “An optimal error estimates of H1-Galerkin expanded mixed finite element methods for nonlinear viscoelasticity-type equation”, Math. Prob. Eng., 2011, 570980 | DOI
[6] R. E. Ewing, Y. Lin, T. Sun, J. Wang, S. Zhang, “Sharp $L^2$-error estimates and superconvergence of mixed finite element methods for non-fickian flows in porous media”, SIAM J. Numer. Anal., 40:4 (2002), 1538–1560
[7] E. H. Georgoulis, P. Houston, “Discontinuous Galerkin methods for the biharmonic problem”, IMA J. Numer. Anal., 29:3 (2009), 573–594
[8] E. H. Georgoulis, T. Pryer, “Analysis of discontinuous Galerkin methods using mesh-dependent norms and applications to problems with rough data”, Calcolo, 54:4 (2017), 1533–1551
[9] T. Gyulov, G. Morosanu, “On a class of boundary value problems involving the p-biharmonic operator”, J. Math. Anal. Appl., 367:1 (2010), 43–57
[10] Y. Huang, X. Liu, “Sign-changing solutions for p-biharmonic equations with Hardy potential in the half-space”, J. Math. Anal. Appl., 444 (2016), 1417–1437
[11] A. Lazer, P. McKenna, “Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis”, SIAM Review, 32:4 (1990), 537–578
[12] C. Liu, J. Guo, “Weak solutions for a fourth order degenerate parabolic equation”, Bull. of the Polish Academy of Sciences, Mathematics, 54:1 (2006), 27–39
[13] L. Li, Ch. Tang, “Existence and multiplicity of solutions for a class of p(x)-biharmonic equations”, Acta Mathematica Scientia, 33B:1 (2013), 155–170 | DOI
[14] V. Li, “The $W_p^1$ stability of the Ritz projection on graded meshes”, Math. Comp., 86 (2017), 49–74
[15] C. G. Makridakis, “On the Babus̄ka-Osborn approach to finite element analysis: $L^2$ estimates for unstructured meshes”, Numer. Mathem., 139:4 (2018), 831–844
[16] N. Rajashekar, S. Chaudhary, V. V.K. Srinivas Kumar, “Approximation of p-biharmonic problem using WEB-spline based mesh-free method”, Intern. J. Nonlin. Sci. Numer. Simul., 20:6 (2019), 703–712
[17] D. Sandri, “Sur l'pproximation numérique descoulements quasi-newtoniens dont la viscosité suit la loi puissance ou la loi de Carreau”, RAIRO Model. Math. Anal. Numer., 27:2 (1993), 131–155
[18] Z. Zhou, “On a p(x)-biharmonic problem with Navier boundary condition”, Boundary Value Problems, 149 (2018), 1–14