Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2022_25_4_a0, author = {A. K. Alekseev and A. E. Bondarev}, title = {An estimation of point-wise approximation error using}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {343--358}, publisher = {mathdoc}, volume = {25}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2022_25_4_a0/} }
TY - JOUR AU - A. K. Alekseev AU - A. E. Bondarev TI - An estimation of point-wise approximation error using JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2022 SP - 343 EP - 358 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2022_25_4_a0/ LA - ru ID - SJVM_2022_25_4_a0 ER -
A. K. Alekseev; A. E. Bondarev. An estimation of point-wise approximation error using. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 4, pp. 343-358. http://geodesic.mathdoc.fr/item/SJVM_2022_25_4_a0/
[1] GOST R 57700.12-2018. Chislennoe modelirovanie sverkhzvukovykh techenii nevyazkogo gaza. Verifikatsiya PO, Natsionalnyi standart RF po chislennomu modelirovaniyu fizicheskikh protsessov, 2018
[2] AIAA-G-077-1998. Guide for the Verification and Validation of Computational Fluid Dynamics Simulations, American Institute of Aeronautics and Astronautics, Reston, VA, 1998
[3] ASME V 20-2009. Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer, ASME, 2009
[4] R. D. Skeel, “Thirteen ways to estimate global error”, Numer. Math., 48 (1986), 1–20 | DOI
[5] Ch. J. Roy, “Review of discretization error estimators in scientific computing”, AIAA J., 126 (2010), 1–29
[6] L. Chamoin, F. Legoll, A pedagogical review on a posteriori error estimation in Finite Element computations, 2021 | DOI
[7] J. L. Synge, The Hypercircle In Mathematical Physics, CUP, London, 1957
[8] W. Prager, J. L. Synge, “Approximation in elasticity based on the concept of function spaces”, Quart. Appl. Math., 5 (1947), 241–269
[9] S. I. Repin, A Posteriori Estimates for Partial Differential Equations, Radon Series on Computational and Applied Mathematics, 4, Walter de Gruyter, 2008 | DOI
[10] M. Ainsworth, J. T. Oden, A Posteriori Error Estimation in Finite Element Analysis, Wiley, NY, 2000
[11] O. C. Zienkiewicz, J. Z. Zhu, “A simple error estimator and adaptive procedure for practical engineering analysis”, Intern. J. for Numerical Methods in Engineering, 24 (1987), 337–357
[12] B. Bertrand, D. Boffi, “The Prager-Synge theorem in reconstruction based a posteriori error estimation”, Numer. Math., 2019; arXiv: 1907.00440v1
[13] Zhiqiang Cai, Cuiyu He, Shun Zhang, “Generalized Prager-Synge inequality and equilibrated error estimators for discontinuous elements”, Numer. Math., 2020, arXiv: 2001.09102v1
[14] I. Babuska, W. C. Rheinboldt, “Error estimates for adaptive finite element computations”, SIAM J. on Numerical Analysis, 15 (1978), 736–754
[15] C. Johnson, P. Hansbo, “Adaptive finite element methods in computational mechanics”, Computer Methods in Applied Mechanics and Engineering, 101:1-3 (1992), 143–181
[16] D. Braess, J. Schoberl, “Equilibrated residuae error estimator for edge elements”, Mathematics of Computation, 77:262 (2008), 651–672
[17] I. Anjam, D. Pauly, “An elementary method of deriving a posteriori error equalities and estimates for linear partial differential equations”, Comput. Methods Appl. Math., 19 (2019), 311–322
[18] S. I. Repin, M. E. Frolov, “Ob aposteriornykh otsenkakh tochnosti priblizhennykh reshenii kraevykh zadach dlya uravnenii ellipticheskogo tipa”, Zhurn. vychisl. matem. i mat. fiziki, 42:12 (2002), 1774–1787
[19] M. E. Ladonkina, O. A. Neklyudova, V. V. Ostapenko, V. F. Tishkin, “Issledovanie tochnosti razryvnogo metoda Galerkina pri raschete reshenii s udarnymi volnami”, Preprinty IPM im. M. V. Keldysha, 2018, 195, 20 pp.
[20] J. B. Collins, D. Estep, S. Tavenera, “Aposteriori error estimation for the Lax-Wendroff finite difference scheme”, J. Comp. Appl. Math., 263 (2014), 299–311
[21] T. Cao, D. W. Kelly, “Pointwise and local error estimates for the quantities of interest in two-dimensional elasticity”, Computers and Mathematics with Applications, 46:1 (2003), 69–79
[22] M. Ainsworth, R. Rankin, “Guaranteed computable bounds on quantities of interest in finite element computations”, Intern. J. for Numerical Methods in Engineering, 89:13 (2012), 1605–1634
[23] T. Gratsch, K.-J. Bathe, “A posteriori error estimation techniques in practical finite element analysis”, Computers and Structures, 83 (2005), 235–265
[24] D. A. Venditti, D. L. Darmofal, “Adjoint error estimation and grid adaptation for functional outputs: application to quasi-one-dimensional flow”, J. of Computational Physics, 164 (2000), 204–227
[25] T. Linss, N. Kopteva, “A posteriori error estimation for a defect-correction method applied to convection-diffusion problems”, Intern. J. of Numerical Analysis and Modeling, 1:1 (2009), 1–16
[26] W. C. Tyson, Ch. J. Roy, C. F. Olliver-Gooch, “A novel reconstruction technique for finite-volume truncation error estimation”, Proc. AIAA Scitech 2019 Forum (Corpus ID: 126737409) | DOI
[27] J. W. Banks, J. A.F. Hittinger, J. M. Connors, C. S. Woodward, “A posteriori error estimation via nonlinear error transport with application to shallow water”, Recent. Adv. Sci. Comput. Appl. Contemporary Mathematics, 586 (2013), 35–42
[28] G. I. Marchuk, V. V. Shaidurov, Povyshenie tochnosti resheniya raznostnykh skhem, Nauka, M., 1979
[29] J. W. Banks, T. D. Aslam, “Richardson extrapolation for linearly degenerate discontinuities”, J. of Scientific Computing, 57:1 (2012), 1–15
[30] Ch. J. Roy, “Grid convergence error analysis for mixed-order numerical schemes”, AIAA J., 41:4 (2003), 595–604
[31] A. K. Alexeev, A. E. Bondarev, “On some features of Richardson extrapolation for compressible inviscid flows”, Mathematica Montisnigri, XL (2017), 42–54
[32] A. K. Alexeev, A. E. Bondarev, “On exact solution enclosure on ensemble of numerical simulations”, Mathematica Montisnigri, XXXVIII (2017), 63–77
[33] A. K. Alekseev, A. E. Bondarev, A. E. Kuvshinnikov, “On uncertainty quantification via the ensemble of independent numerical solutions”, J. of Computational Science, 42 (2020), 101114 | DOI
[34] A. K. Alekseev, A. E. Bondarev, “Ob aposteriornoi otsenke normy pogreshnosti chislennogo rascheta na ansamble nezavisimykh reshenii”, Sib. zhurn. vychisl. matematiki, 23:3 (2020), 233–246
[35] A. K. Alekseev, A. E. Bondarev, A. E. Kuvshinnikov, “A posteriori error estimation via differences of numerical solutions”, Proc. ICCS 2020, Lect. Notes in Comp. Sci., 12143, eds. V.V. Krzhizhanovskaya et al., Springer Nature, 2020, 508–519 | DOI
[36] A. K. Alekseev, A. E. Bondarev, A. E. Kuvshinnikov, “A comparison of the Richardson extrapolation and the approximation error estimation on the ensemble of numerical solutions”, Proc. Computational Science ICCS 2021, Lect. Notes in Comp. Sci., 12747, eds. M. Paszynski et al., Springer, 2021, 554–566 | DOI
[37] W. S. Torgerson, “Multidimensional scaling: theory and method”, Psychometrika, 17 (1952), 401–419
[38] O. M. Alifanov, E. A. Artyukhin, S. V. Rumyantsev, Ekstremalnye metody resheniya nekorrektnykh zadach, Nauka, M., 1988
[39] A. N. Tikhonov, V. Ya. Arsenin, Metody resheniya nekorrektnykh zadach, Nauka, M., 1979
[40] I. Babuska, J. Osborn, Can a finite element method perform arbitrarily badly?, Math. Comp., 69:230 (2000), 443–462
[41] N. N. Kuznetsov, “Tochnost nekotorykh priblizhennykh metodov rascheta slabykh reshenii kvazilineinogo uravneniya pervogo poryadka”, Zhurn. vychisl. matem. i mat. fiziki, 16:6 (1976), 1489–1502
[42] M. H. Carpenter, J. H. Casper, “Accuracy of shock capturing in two spatial dimensions”, AIAA J., 37:9 (1999), 1072–1079
[43] J. W. Banks, T. Aslam, W. J. Rider, “On sub-linear convergence for linearly degenerate waves in capturing schemes”, J. Comput. Phys., 227 (2008), 6985–7002
[44] B. Edney, “Effects of shock impingement on the heat transfer around blunt bodies”, AIAA J., 6:1 (1968), 15–21
[45] I. Babuska, R. Duran, R. Rodriguez, “Analysis of the efficiency of an a posteriori error estimator for linear triangular finite elements”, SIAM J. on Numer. Anal., 29:4 (1992), 947–964
[46] A. G. Kulikovskii, N. V. Pogorelov, A. Yu. Semenov, Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001
[47] M. Sun, K. Katayama, “An artificially upstream flux vector splitting for the Euler equations”, J. Comput. Phys., 189 (2003), 305–329
[48] S. Osher, S. Chakravarthy, “Very high order accurate TVD schemes”, Oscillation Theory, Computation, and Methods of Compensated Compactness, The IMA Volumes in Mathematics and its Applications, 2, 1984, 229–274 | DOI
[49] OpenFOAM, http://www.openfoam.org