Generalization of the Gauss–Jordan method for solving homogeneous infinite systems of
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 3, pp. 329-342.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we, first, using the reduction method in the narrow sense (the simple reduction method), have generalized the classical Gauss–Jordan method for solving finite systems of linear algebraic equations to inhomogeneous infinite systems. The generalization is based on a new theory of solutions to inhomogeneous infinite systems, proposed by us, which gives an exact analytical solution in the form of a series. Second, we have shown that the application of reduction in the narrow sense in the case of homogeneous systems gives only a trivial solution, therefore, in order to generalize the Gauss–Jordan method for solving infinite homogeneous systems, we used the reduction method in the wide sense. A numerical comparison is given that shows acceptable accuracy.
@article{SJVM_2022_25_3_a7,
     author = {F. M. Fedorov and N. N. Pavlov and S. V. Potapova and O. F. Ivanova and V. Yu. Shadrin},
     title = {Generalization of the {Gauss{\textendash}Jordan} method for solving homogeneous infinite systems of},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {329--342},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2022_25_3_a7/}
}
TY  - JOUR
AU  - F. M. Fedorov
AU  - N. N. Pavlov
AU  - S. V. Potapova
AU  - O. F. Ivanova
AU  - V. Yu. Shadrin
TI  - Generalization of the Gauss–Jordan method for solving homogeneous infinite systems of
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2022
SP  - 329
EP  - 342
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2022_25_3_a7/
LA  - ru
ID  - SJVM_2022_25_3_a7
ER  - 
%0 Journal Article
%A F. M. Fedorov
%A N. N. Pavlov
%A S. V. Potapova
%A O. F. Ivanova
%A V. Yu. Shadrin
%T Generalization of the Gauss–Jordan method for solving homogeneous infinite systems of
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2022
%P 329-342
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2022_25_3_a7/
%G ru
%F SJVM_2022_25_3_a7
F. M. Fedorov; N. N. Pavlov; S. V. Potapova; O. F. Ivanova; V. Yu. Shadrin. Generalization of the Gauss–Jordan method for solving homogeneous infinite systems of. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 3, pp. 329-342. http://geodesic.mathdoc.fr/item/SJVM_2022_25_3_a7/

[1] L. V. Kantorovich, V. I. Krylov, Priblizhennye metody vysshego analiza, GITTL, M., 1952 | MR

[2] F. M. Fedorov, “Ob algoritme Gaussa dlya beskonechnykh sistem lineinykh algebraicheskikh uravnenii (BSLAU)”, Mat. zametki YaGU, 19:1 (2012), 133–140

[3] F. M. Fedorov, “Neodnorodnye gaussovy beskonechnye sistemy lineinykh algebraicheskikh uravnenii (BSLAU)”, Mat. zametki YaGU, 19:1 (2012), 124–131

[4] F. M. Fedorov, O. F. Ivanova, N. N. Pavlov, “Skhodimost metoda reduktsii i sovmestnost beskonechnykh sistem”, Vestnik SVFU im. M.K. Ammosova, 11:2 (2014), 14–21

[5] F. M. Fedorov, “On remarkable relations and the passage to the limit in the theory of infinite systems”, J. Generalized Lie Theory Appl., 9:1 (2015), 1–9 | DOI | MR

[6] F. M. Fedorov, “On the theory of infinite systems of linear algebraic equation”, TWMS J. Pure Appl. Math., 6:2 (2015), 202–212 | MR

[7] F. M. Fedorov, O. F. Ivanova, N. N. Pavlov, “Ob osobennostyakh beskonechnykh sistem”, Mat. zametki SVFU, 22:4 (2015), 62–78

[8] F. M. Fedorov, “Introduction to the theory of infinite systems. Theory and practices”, Smart Construction Towards Global Challenges, v. 1, Proc. AIP Conference, 1907, 2017, 030006

[9] O. F. Ivanova, N. N. Pavlov, F. M. Fedorov, “O glavnykh i strogo chastnykh resheniyakh beskonechnykh sistem”, Zhurn. vychisl. matem. i mat. fiziki, 56:3 (2016), 351–362

[10] H. Koch, “On regular and irregular solutions of some infinite systems of linear equations”, Proc. of the fifth International Congress of Mathematicians (Cambridge, 22-28 August 1912), v. I, Cambridge University Press, 1912, 352–365 https://www.mathunion.org/fileadmin/ICM/Proceedings/ICM1912.1/ICM1912.1.ocr.pdf

[11] I. P. Natanson, “Ob odnoi beskonechnoi sisteme lineinykh uravnenii”, Izv. Kazansk. Fiz. mat. obschestva, ser. 3, 7 (1934-1935), 97–98

[12] F. M. Fedorov, Periodicheskie beskonechnye sistemy lineinykh algebraicheskikh uravnenii, Nauka, Novosibirsk, 2009

[13] F. M. Fedorov, Beskonechnye sistemy lineinykh algebraicheskikh uravnenii i ikh prilozheniya, Nauka, Novosibirsk, 2011

[14] F. Riesz, Les Systemes D'equation Lineaires a une Infinite D'inconnues, Gauthier-Villars, Paris, 1913

[15] P. N. Shivakumar, R. Wong, “Linear equations in infinite vatrices”, Linear Alg. Appl., 7 (1973), 53–62 | DOI | MR

[16] V. F. Kagan, Osnovaniya teorii opredelitelei, Gos. izd-vo Ukrainy. Odesskoe otd-nie, Kiev, 1922

[17] R. Kuk, Beskonechnye matritsy i prostranstva posledovatelnostei, Fizmatgiz, M., 1960

[18] O. F. Ivanova, N. N. Pavlov, F. M. Fedorov, “Reshenie zadachi ob izgibe plastinki s zadelannymi krayami putem svedeniya k beskonechnym sistemam uravnenii”, Prikladnaya matematika i mekhanika, 83:2 (2019), 295–302 | MR