Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2022_25_3_a6, author = {D. M. Tefera and A. A. Tiruneh and G. A. Derese}, title = {Fitted operator method over {Gaussian}}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {315--328}, publisher = {mathdoc}, volume = {25}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2022_25_3_a6/} }
TY - JOUR AU - D. M. Tefera AU - A. A. Tiruneh AU - G. A. Derese TI - Fitted operator method over Gaussian JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2022 SP - 315 EP - 328 VL - 25 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2022_25_3_a6/ LA - ru ID - SJVM_2022_25_3_a6 ER -
D. M. Tefera; A. A. Tiruneh; G. A. Derese. Fitted operator method over Gaussian. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 3, pp. 315-328. http://geodesic.mathdoc.fr/item/SJVM_2022_25_3_a6/
[1] E. Bashier, K. Patidar, “A novel fitted operator finite difference method for a singularly perturbed delay parabolic partial differential equation”, Appl. Math. Comp., 217:9 (2011), 4728–4739 | DOI | MR
[2] P. Chakravarthy, S. D. Kumar, R. Rao, “An exponentially fitted finite difference scheme for a class of singularly perturbed delay differential equations with large delays”, Ain Shams Engineering J., 8:4 (2017), 663–671 | DOI | MR
[3] P. P. Chakravarthy, K. Kumar, “An adaptive mesh method for time dependent singularly perturbed differential-difference equations”, Nonlinear Engineering, 8 (2019), 328–339 | DOI
[4] C. Clavero, J. L. Gracia, “A higher order uniformly convergent method with Richardson extrapolation in time for singularly perturbed reaction-diffusion parabolic problems”, J. Comp. Appl. Math., 252 (2013), 75–85 | DOI | MR
[5] E. Doolan, J. Miller, W. Schilders, Uniform Numerical Methods for Problems with Initial and Boundary Layers, Boole Press, Dublin, 1980 | MR
[6] M. K. Kadalbajoo, A. Awasthi, “Crank-Nicolson finite difference method based on a midpoint upwind scheme on a non-uniform mesh for time-dependent singularly perturbed convection-diffusion equations”, Intern. J. Comp. Math., 85 (2008), 771–790 | DOI | MR
[7] M. K. Kadalbajoo, A. Awasthi, “The midpoint upwind finite difference scheme for time-dependent singularly perturbed convection-diffusion equations on non-uniform mesh”, Intern. J. Comp. Meth. Engineering Science and Mechanics, 12:3 (2011), 150–159 | DOI | MR
[8] D. Kumar, P. Kumari, “A parameter-uniform numerical scheme for the parabolic singularly perturbed initial boundary value problems with large time delay”, J. Appl. Math. Comp., 59 (2019), 179–206 | DOI | MR
[9] K. Kumar, T. Gupta et al, “An Adaptive Mesh Selection Strategy for Solving Singularly Perturbed Parabolic Partial Differential Equations with a Small Delay”, Appl. Math. Scientific Comp., Springer, 2019 | DOI
[10] T. Linß, M. Stynes, “A hybrid difference scheme on a Shishkin mesh for linear convection-diffusion problems”, Applied Numerical Mathematics, 31 (1999), 255–270 | DOI | MR
[11] J. Miller, E. O'Riordan, G. Shishkin, Fitted Numerical Methods for Singular Perturbation Problems, World Scientific, 2012 | MR
[12] R. E. O'Malley, Historical Developments in Singular Perturbations, Springer, 1974 | MR
[13] D. Phaneendra, M. Lalu, “Gaussian quadrature for two-point singularly perturbed boundary value problems with exponential fitting”, Communications in Mathematics and Applications, 10:3 (2019), 447–467 | DOI
[14] Hans-G. Roos, M. Stynes, L. Tobiska, Robust Numerical Methods for Singularly Perturbed Differential Equations, Springer Series in Computational Mathematics, Springer, 2008 | MR
[15] S. Sastry, Introductory Methods of Numerical Analysis, 5th Ed., New Delhi, 2012
[16] J. Singh, S. Kumar, M. Kumar, “A domain decomposition method for solving singularly perturbed parabolic reaction-diffusion problems with time delay”, Numerical Methods for Partial Differential Equations, 34:5 (2018), 1849–1866 | DOI | MR
[17] D. K. Swamy, K. Phaneendra, Y. Reddy, “A fitted non standard finite difference method for singularly perturbed differential difference equations with mixed shifts”, J. Afrikana, 3:4 (2016), 1–20 | MR
[18] A. B. Tesfaye, F. Gemechis, “Fitted operator average finite difference method for solving singularly perturbed parabolic convection-diffusion problems”, Intern. J. Engineering and Appl. Sciences, 11:3 (2019), 414–427 | DOI