Monte Carlo simulation of ring-shaped structures of
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 3, pp. 303-313.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with Monte Carlo simulation of optical phenomena which appear in the lidar sensing of atmospheric clouds and water media. By numerical experiments we study peculiarities of the laser pulse propagation when the light forms expanding ring structures at the expense of multiple scattering.
@article{SJVM_2022_25_3_a5,
     author = {S. M. Prigarin and D. E. Mironova},
     title = {Monte {Carlo} simulation of ring-shaped structures of},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {303--313},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2022_25_3_a5/}
}
TY  - JOUR
AU  - S. M. Prigarin
AU  - D. E. Mironova
TI  - Monte Carlo simulation of ring-shaped structures of
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2022
SP  - 303
EP  - 313
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2022_25_3_a5/
LA  - ru
ID  - SJVM_2022_25_3_a5
ER  - 
%0 Journal Article
%A S. M. Prigarin
%A D. E. Mironova
%T Monte Carlo simulation of ring-shaped structures of
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2022
%P 303-313
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2022_25_3_a5/
%G ru
%F SJVM_2022_25_3_a5
S. M. Prigarin; D. E. Mironova. Monte Carlo simulation of ring-shaped structures of. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 3, pp. 303-313. http://geodesic.mathdoc.fr/item/SJVM_2022_25_3_a5/

[1] S. M. Ermakov, G. A. Mikhailov, Statisticheskoe modelirovanie, Nauka, M., 1982 | MR

[2] B. Cahalan, M. McGill, J. Kolasinski, T. Varnai, K. Yetzer, “THOR cloud thickness from offbeam lidar returns”, J. Atmospheric and Oceanic Technology, 22:6 (2005), 605–627 | DOI

[3] A. B. Davis, R. F. Cahalan, J. D. Spinhirne, M. J. McGill, S. P. Love, “Off-beam lidar: an emerging technique in cloud remote sensing based on radiative Green-function theory in the diffusion domain”, Phys. Chem. Earth. Part B, 24 (1999), 177–185 | DOI

[4] V. I. Haltrin, “Analytical approximations to seawater optical phase functions of scattering”, Remote Sensing and Modeling of Ecosystems for Sustainability, Proc. SPIE, 5544, 2004, 356–363 | DOI

[5] M. Hess, P. Koepke, I. Schult, “Optical properties of aerosols and clouds: the software package OPAC”, Bull. Amer. Meteor. Soc., 79 (1998), 831–844 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[6] Ya. A. Ilyushin, “Transient polarized radiative transfer in cloud layers: numerical simulation of imaging lidar returns”, J. Optical Society of America A, 36:4 (2019), 540–548 | DOI

[7] Ya. A. Ilyushin, “Dynamic backscattering halo of pulsed laser beams in thin cloud layers”, Radiophysics and Quantum Electronics, 62 (2019), 192–199 | DOI

[8] S. P. Love, A. B. Davis, C. Ho, C. A. Rohde, “Remote sensing of cloud thickness and liquid water content with Wide-Angle Imaging Lidar (WAIL)”, Atmospheric Research, 59-60 (2001), 295–312 | DOI

[9] S. P. Love, A. B. Davis, C. A. Rohde, L. Tellier, C. Ho, “Active probing of cloud multiple scattering, optical depth, vertical thickness, and liquid water content using Wide-Angle Imaging Lidar”, Proc. SPIE, 4815, 2002, 129–138 | DOI

[10] G. I. Marchuk, G. A. Mikhailov, M. A. Nazaraliev et al, Monte Carlo Methods in Atmospheric Optics, Springer-Verlag, Berlin–Heidelberg–New York, 1989 | MR

[11] V. I. Mankovsky, V. I. Haltrin, “Light scattering phase functions measured in waters of Mediterranean Sea”, Proc. Oceans '02 MTS/IEEE, v. 4, 2002, 2368–2373 | DOI

[12] U. G. Oppel, M. Wengenmayer, S. M. Prigarin, “Monte Carlo simulations of polarized CCD lidar returns”, J. Atmospheric and Oceanic Optics, 20:12 (2007), 1086–1091

[13] I. N. Polonsky, S. P. Love, A. B. Davis, “Wide-Angle Imaging Lidar deployment at the ARM Southern Great Plains site: intercomparison of cloud property retrievals”, J. Atmospheric and Oceanic Technology, 22:6 (2005), 628–648 | DOI

[14] S. M. Prigarin, “Monte Carlo simulation of the effects caused by multiple scattering of ground-based and spaceborne lidar pulses in clouds”, J. Atmospheric and Oceanic Optics, 30:1 (2017), 79–83 | DOI

[15] S. M. Prigarin, T. V. Aleshina, “Monte Carlo simulation of ring-shaped returns for CCD LIDAR systems”, Russ. J. Numer. Anal. Math. Model, 30:4 (2015), 251–257 | DOI | MR