Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2022_25_3_a5, author = {S. M. Prigarin and D. E. Mironova}, title = {Monte {Carlo} simulation of ring-shaped structures of}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {303--313}, publisher = {mathdoc}, volume = {25}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2022_25_3_a5/} }
TY - JOUR AU - S. M. Prigarin AU - D. E. Mironova TI - Monte Carlo simulation of ring-shaped structures of JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2022 SP - 303 EP - 313 VL - 25 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2022_25_3_a5/ LA - ru ID - SJVM_2022_25_3_a5 ER -
S. M. Prigarin; D. E. Mironova. Monte Carlo simulation of ring-shaped structures of. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 3, pp. 303-313. http://geodesic.mathdoc.fr/item/SJVM_2022_25_3_a5/
[1] S. M. Ermakov, G. A. Mikhailov, Statisticheskoe modelirovanie, Nauka, M., 1982 | MR
[2] B. Cahalan, M. McGill, J. Kolasinski, T. Varnai, K. Yetzer, “THOR cloud thickness from offbeam lidar returns”, J. Atmospheric and Oceanic Technology, 22:6 (2005), 605–627 | DOI
[3] A. B. Davis, R. F. Cahalan, J. D. Spinhirne, M. J. McGill, S. P. Love, “Off-beam lidar: an emerging technique in cloud remote sensing based on radiative Green-function theory in the diffusion domain”, Phys. Chem. Earth. Part B, 24 (1999), 177–185 | DOI
[4] V. I. Haltrin, “Analytical approximations to seawater optical phase functions of scattering”, Remote Sensing and Modeling of Ecosystems for Sustainability, Proc. SPIE, 5544, 2004, 356–363 | DOI
[5] M. Hess, P. Koepke, I. Schult, “Optical properties of aerosols and clouds: the software package OPAC”, Bull. Amer. Meteor. Soc., 79 (1998), 831–844 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[6] Ya. A. Ilyushin, “Transient polarized radiative transfer in cloud layers: numerical simulation of imaging lidar returns”, J. Optical Society of America A, 36:4 (2019), 540–548 | DOI
[7] Ya. A. Ilyushin, “Dynamic backscattering halo of pulsed laser beams in thin cloud layers”, Radiophysics and Quantum Electronics, 62 (2019), 192–199 | DOI
[8] S. P. Love, A. B. Davis, C. Ho, C. A. Rohde, “Remote sensing of cloud thickness and liquid water content with Wide-Angle Imaging Lidar (WAIL)”, Atmospheric Research, 59-60 (2001), 295–312 | DOI
[9] S. P. Love, A. B. Davis, C. A. Rohde, L. Tellier, C. Ho, “Active probing of cloud multiple scattering, optical depth, vertical thickness, and liquid water content using Wide-Angle Imaging Lidar”, Proc. SPIE, 4815, 2002, 129–138 | DOI
[10] G. I. Marchuk, G. A. Mikhailov, M. A. Nazaraliev et al, Monte Carlo Methods in Atmospheric Optics, Springer-Verlag, Berlin–Heidelberg–New York, 1989 | MR
[11] V. I. Mankovsky, V. I. Haltrin, “Light scattering phase functions measured in waters of Mediterranean Sea”, Proc. Oceans '02 MTS/IEEE, v. 4, 2002, 2368–2373 | DOI
[12] U. G. Oppel, M. Wengenmayer, S. M. Prigarin, “Monte Carlo simulations of polarized CCD lidar returns”, J. Atmospheric and Oceanic Optics, 20:12 (2007), 1086–1091
[13] I. N. Polonsky, S. P. Love, A. B. Davis, “Wide-Angle Imaging Lidar deployment at the ARM Southern Great Plains site: intercomparison of cloud property retrievals”, J. Atmospheric and Oceanic Technology, 22:6 (2005), 628–648 | DOI
[14] S. M. Prigarin, “Monte Carlo simulation of the effects caused by multiple scattering of ground-based and spaceborne lidar pulses in clouds”, J. Atmospheric and Oceanic Optics, 30:1 (2017), 79–83 | DOI
[15] S. M. Prigarin, T. V. Aleshina, “Monte Carlo simulation of ring-shaped returns for CCD LIDAR systems”, Russ. J. Numer. Anal. Math. Model, 30:4 (2015), 251–257 | DOI | MR