Finite difference schemes of the 4th order of approximation for
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 3, pp. 289-301.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, optimum differential schemes for the solution of the Maxwell equations with the use of the Laquerre spectral transformation are considered. Additional parameters are introduced into the differential scheme of equations for harmonics. Numerical values of these parameters are obtained by minimization of an error of differential approximation of the Helmholtz equation. The optimum values of parameters thus obtained are used when constructing differential schemes — optimum differential schemes. Two versions of optimum differential schemes are considered. It is shown that the use of optimum differential schemes leads to an increase in the accuracy of the solution of the equations. A simple modification of the differential scheme gives an increase in the efficiency of the algorithm.
@article{SJVM_2022_25_3_a4,
     author = {A. F. Mastryukov},
     title = {Finite difference schemes of the 4th order of approximation for},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {289--301},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2022_25_3_a4/}
}
TY  - JOUR
AU  - A. F. Mastryukov
TI  - Finite difference schemes of the 4th order of approximation for
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2022
SP  - 289
EP  - 301
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2022_25_3_a4/
LA  - ru
ID  - SJVM_2022_25_3_a4
ER  - 
%0 Journal Article
%A A. F. Mastryukov
%T Finite difference schemes of the 4th order of approximation for
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2022
%P 289-301
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2022_25_3_a4/
%G ru
%F SJVM_2022_25_3_a4
A. F. Mastryukov. Finite difference schemes of the 4th order of approximation for. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 3, pp. 289-301. http://geodesic.mathdoc.fr/item/SJVM_2022_25_3_a4/

[1] T. Bergmann, J. O.A. Robertsson, K. Hollige, “Finite difference modeling of electromagnetic wave in dispersive and attenuating media”, Geophysics, 63 (1998), 856–867 | DOI

[2] T. Bergmann, J. O. Blanch, J. O.A. Robertsson, K. Holliger, “A simplified Lax-Wendroff correction for staggered-grid FDTD modeling of electromagnetic wave in frequency-dependent media”, Geophysics, 64 (1999), 1369–1377 | DOI

[3] R. Luebbers, F. P. Hansberger, “FDTD for Nth-order dispersive media”, IEEE Trans. Ant Propog., 40 (1992), 1297–1301 | DOI

[4] G. Turner, A. F. Siggins, “Constant Q attenuation of subsurface radar pulses”, Geophysics, 59 (1994), 1192–1200 | DOI

[5] A.G. Tarkhov (red.), Elektrorazvedka. Spravochnik geofizika, Nedra, M., 1980

[6] G. V. Konyukh, B. G. Mikhailenko, “Primenenie integralnogo preobrazovaniya Lagerra pri reshenii dinamicheskikh zadach seismiki”, Mat. modelirovanie v geofizike, Tr. IVMiMG SO RAN, 5, Novosibirsk, 1998, 107–112

[7] A. F. Mastryukov, B. G. Mikhailenko, “Chislennoe modelirovanie rasprostraneniya elektromagnitnykh voln v neodnorodnykh sredakh s zatukhaniem na osnove spektralnogo preobrazovaniya Lagerra”, Geologiya i geofizika, 44:10 (2003), 1060–1069

[8] A. F. Mastryukov, B. G. Mikhailenko, “Modelirovanie rasprostraneniya elektromagnitnykh voln v relaksatsionnykh sredakh na osnove spektralnogo preobrazovaniya Lagerra”, Geologiya i geofizika, 47:3 (2006), 397–407

[9] Dzh. Golub, Ch. Van Loun, Matrichnye vychisleniya, Mir, M., 1999

[10] C. K. Tam, J. C. Webb, “Dispersion-relation-preserving finite difference schemes for computational acoustics”, J. Computational Physics, 107:2 (1993), 262–281 | DOI | MR

[11] C. H. Jo, C. Shin, H. S. Suh, “An optimal 9-point, finite-difference, frequency-space, 2-d scalar wave extrapolator”, Geophysics, 61 (1996), 529–537 | DOI

[12] J. B. Chen, “An average derivative optimal scheme for frequency-domain scalar wave equation”, Geophysics, 77 (2012), 201–210

[13] A. F. Mastryukov, B. G. Mikhailenko, “Optimalnye raznostnye skhemy dlya uravnenii Maksvella pri reshenii pryamykh zadach elektromagnitnykh zondirovanii”, Geologiya i geofizika, 56:9 (2015), 1713–1722

[14] A. F. Mastryukov, “Raznostnaya skhema dlya odnomernykh uravnenii Maksvella”, Sib. zhurn. vychisl. matematiki, 23:1 (2020), 69–82 | MR

[15] A. F. Mastryukov, “Optimalnye raznostnye skhemy dlya volnovogo uravneniya”, Sib. zhurn. vychisl. matematiki, 19:5 (2016), 107–112

[16] A. F. Mastryukov, “Raznostnye skhemy na osnove preobrazovaniya Lagerra”, Zhurn. vychisl. matem. i mat. fiziki, 61:3 (2021), 373–381 | MR

[17] L. D. Landau, E. M. Lifshits, Elektrodinamika sploshnykh sred, Nauka, M., 1982 | MR

[18] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979

[19] F. P. Vasilev, Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1980 | MR

[20] M. Ghrist, B. Fornberg, T. A. Driscoll, “Staggered time integrator for wave equations”, SIAM J. Numer. Anal., 38 (2000), 718–741 | DOI | MR