Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2022_25_3_a3, author = {D. Conte and N. Guarino and G. Pagano and B. Paternoster}, title = {On the advantages of}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {269--287}, publisher = {mathdoc}, volume = {25}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2022_25_3_a3/} }
D. Conte; N. Guarino; G. Pagano; B. Paternoster. On the advantages of. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 3, pp. 269-287. http://geodesic.mathdoc.fr/item/SJVM_2022_25_3_a3/
[1] R. Anguelov, J. M.S. Lubuma, “Contributions to the mathematics of the nonstandard finite difference method and applications”, Numer. Methods Partial Differ. Equ., 17:5 (2001), 518–543 | DOI | MR
[2] M. A. Budroni, G. Pagano, B. Paternoster et al, “Synchronization scenarios induced by delayed communication in arrays of diffusively coupled autonomous chemical oscillators”, Physical Chemistry Chemical Physics, 23:32 (2021), 17606–17615 | DOI
[3] M. A. Budroni, G. Pagano, B. Paternoster et al., “A model for coupled Belousov-Zhabotinsky oscillators with delay”, Proc. 14th WCCM-ECCOMAS Congress 2020, 2021 | DOI
[4] I. M. Bulai, R. Cavoretto, B. Chialva, D. Duma, E. Venturino, “Comparing disease-control policies for interacting wild populations”, Nonlinear Dyn., 79:3 (2015), 1881–1900 | DOI
[5] D. Conte, R. D'Ambrosio, M. Moccaldi, B. Paternoster, “Adapted explicit two-step peer methods”, J. Numer. Math., 27:2 (2018), 69–83 | DOI | MR
[6] D. Conte, F. Mohammadi, L. Moradi, B. Paternoster, “Exponentially fitted two-step peer methods for oscillatory problems”, Comput. Appl. Math., 39:3 (2020) | DOI | MR
[7] L. Eigentler, J. A. Sherratt, “Metastability as a coexistence mechanism in a model for dryland vegetation patterns”, Bull. Math. Biol., 81 (2019), 2290–2322 | DOI | MR
[8] J. H. Ferziger, M. Peric, Computational Methods for Fluid Dynamics, Springer, 1996 | MR
[9] N. Ganegoda, T. Götz, K. Putra Wijaya, “An age-dependent model for dengue transmission: Analysis and comparison to field data”, Appl. Math. Comput., 388 (2021) | DOI | MR
[10] P. D. Giamberardino, D. Iacoviello, F. Papa, C. Sinisgalli, “Dynamical evolution of COVID-19 in Italy with an evaluation of the size of the asymptomatic infective population”, IEEE J. Biomed., 25:4 (2021), 1326–1332
[11] L. Ixaru, G. Berghe, Exponential Fitting, Springer, 2004 | DOI | MR
[12] W. O. Kermack, A. G. McKendrick, “Contributions to the mathematical theory of epidemics-I”, Bull. Math. Biol., 53 (1991), 33–55
[13] C. Koroglu, “Exact and nonstandard finite difference schemes for the generalized KdV-Burgers equation”, Adv. Differ. Equ., 2020 | DOI | MR
[14] R. E. Mickens, “Calculation of denominator functions for nonstandard finite difference schemes for differential equations satisfying a positivity condition”, Numer. Methods Partial Differ. Equ., 23 (2007), 672–691 | DOI | MR
[15] R. E. Mickens, “Dynamic consistency: a fundamental principle for constructing nonstandard finite difference schemes for differential equations”, J. Differ. Equ. Appl, 11 (2005), 645–653 | DOI | MR
[16] R. E. Mickens, “Analysis of a new finite-difference scheme for the linear advection-diffusion equation”, J. Sound Vib, 146:2 (1991), 342–344 | DOI | MR
[17] R. E. Mickens, Nonstandard Finite Difference Models of Differential Equations, World Scientific Publishing, 1993 | MR
[18] R. E. Mickens, “Exact solutions to a finite-difference model of a nonlinear reaction-advection equation: implications for numerical analysis”, Numer. Methods Partial Differ. Equ, 5 (1989), 313–325 | DOI | MR
[19] J. D. Murray, Mathematical Biology, Springer, 1993 | MR
[20] Previdi F. Esempio, “Modelli compartimentali epidemiologici per la descrizione della diffusione delle infezioni”, University Lecture Notes, 2020, 1–35
[21] A. Markus, R. E. Mickens, “Suppression of numerically induced chaos with nonstandard finite difference schemes”, J. Comput. Appl. Math., 106 (1999), 317–324 | DOI | MR
[22] T. S. Shaikh, N. Fayyaz, N. Ahmed et al, “Numerical study for epidemic model of hepatitis-B virus”, Eur. Phys. J. Plus, 136 (2021)
[23] R. Ud Din, K. Shah, I. Ahmad, T. Abdeljawad, “Study of transmission dynamics of novel COVID-19 by using mathematical model”, Adv. Differ. Equ., 2020, 323 | DOI | MR
[24] A. Viguerie, A. Veneziani, G. Lorenzo et al, “Diffusion-reaction compartmental models formulated in a continuum mechanics framework: application to COVID-19, mathematical analysis, and numerical study”, Comput. Mech., 66 (2020), 1131–1152 | DOI | MR