Approximation properties by some modified Szasz-Mirakjan-Kantorovich operators
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 2, pp. 209-225.

Voir la notice de l'article provenant de la source Math-Net.Ru

The present article deals with approximation results by means of the Lipschitz maximal function, Ditzian-Totik modulus of smoothness, and Lipschitz type space having two parameters for the summation-integral type operators defined by Mishra and Yadav [22]. Further, we determine the rate of convergence in terms of the derivative of bounded variation. To estimate the quantitative results of the defined operators, we establish quantitative Voronovskaya type and Gruss type theorems. Moreover; examples are given with graphical representation to support the main results.
@article{SJVM_2022_25_2_a7,
     author = {R. Yadav and R. Meher and V. N. Mishra},
     title = {Approximation properties by some modified {Szasz-Mirakjan-Kantorovich} operators},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {209--225},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2022_25_2_a7/}
}
TY  - JOUR
AU  - R. Yadav
AU  - R. Meher
AU  - V. N. Mishra
TI  - Approximation properties by some modified Szasz-Mirakjan-Kantorovich operators
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2022
SP  - 209
EP  - 225
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2022_25_2_a7/
LA  - ru
ID  - SJVM_2022_25_2_a7
ER  - 
%0 Journal Article
%A R. Yadav
%A R. Meher
%A V. N. Mishra
%T Approximation properties by some modified Szasz-Mirakjan-Kantorovich operators
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2022
%P 209-225
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2022_25_2_a7/
%G ru
%F SJVM_2022_25_2_a7
R. Yadav; R. Meher; V. N. Mishra. Approximation properties by some modified Szasz-Mirakjan-Kantorovich operators. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 2, pp. 209-225. http://geodesic.mathdoc.fr/item/SJVM_2022_25_2_a7/

[1] Acu A. M., Gonska H., Rasa I., “Gruss-type and Ostrowski-type inequalities in approximation theory”, Ukrainian Mathematical J., 63:6 (2011), 843–864 | DOI | MR | Zbl

[2] Acar T., “Quantitative q-Voronovskaya and q-Gruss-Voronovskaya-type results for q-Szasz operators”, Georgian Mathematical J., 23:4 (2016), 459–468 | DOI | MR | Zbl

[3] Altomare F., Montano M. C., Leonessa V., “On a generalization of Szasz-Mirakjan-Kantorovich operators”, Results in Mathematics, 63:3–4 (2013), 837–863 | DOI | MR | Zbl

[4] Butzer P. L., “On the extensions of Bernstein polynomials to the infinite interval”, Proceedings of the American Mathematical Society, 5:4 (1954), 547–553 | DOI | MR | Zbl

[5] Bojanic R., “An estimate of the rate of convergence for Fourier series of functions of bounded variation”, Publications de l'Institut Mathematique [Elektronische Ressource], 1979, no. 40, 57–60 | MR | Zbl

[6] Bojanic R., Cheng F., “Rate of convergence of Bernstein polynomials for functions with derivatives of bounded variation”, J. of Mathematical Analysis and Applications, 141:1 (1989), 136–151 | DOI | MR | Zbl

[7] Bojanic R., Khan M. K., “Rate of convergence of some operators of functions with derivatives of bounded variation”, Atti Sem. Mat. Fis. Univ. Modena, 39:2 (1991), 495–512 | MR | Zbl

[8] Cheng F., “On the rate of convergence of Bernstein polynomials of functions of bounded variation”, J. of Approximation Theory, 39:3 (1983), 259–274 | DOI | MR | Zbl

[9] Ditzian Z., Totik V., Moduli of Smoothness, Springer Series in Computational Mathematics, 9, Springer Verlag, Berlin, 1987 | DOI | MR | Zbl

[10] Erencin A., Buyukdurakoglu S., “A modification of generalized Baskakov-Kantorovich operators”, Stud. Univ. Babes-Bolyai Math., 59, 2014, 351–364 | MR | Zbl

[11] Gal S., Gonska H., Gruss and Gruss-Voronovskaya-type estimates for some Bernstein-type polynomials of real and complex variables, 22 pp., arXiv: 1401.6824 | MR

[12] Gandhi R. B., Deepmala, Mishra V. N., “Local and global results for modified Szasz-Mirakjan operators”, Math. Method. Appl. Sci., 40:7 (2017), 2491–2504 | DOI | MR | Zbl

[13] Gonska H., Paltanea R., “General Voronovskaya and asymptotic theorems in simultaneous approximation”, Mediterranean J. of Mathematics, 7:1 (2010), 37–49 | DOI | MR | Zbl

[14] Gonska H., Tachev G., “Gruss-type inequalities for positive linear operators with second order moduli”, Matematicki Vesnik, 63:4 (2011), 247–252 | MR | Zbl

[15] Guo S. S., Khan M. K., “On the rate of convergence of some operators on functions of bounded variation”, J. of Approximation Theory, 58:1 (1989), 90–101 | DOI | MR | Zbl

[16] Guo S., “On the rate of convergence of the Durrmeyer operator for functions of bounded variation”, J. of Approximation Theory, 51:2 (1987), 183–192 | DOI | MR | Zbl

[17] Ispir N., “Rate of convergence of generalized rational type Baskakov operators”, Mathematical and Computer Modelling, 46:5–6 (2007), 625–631 | DOI | MR | Zbl

[18] Lenze B., “On Lipschitz-type maximal functions and their smoothness spaces”, Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen. Indagationes Mathematicae (Proceedings) / Series A, Mathematical sciences, 91:1 (1988), 53–63 | MR

[19] Mirakjan G. M., “Approximation of continuous functions with the aid of polynomials”, Dokl. Akad. Nauk SSSR, 31 (1941), 201–205

[20] Mishra L. N., Srivastava A., Khan T., Khan S. A., Mishra V. N., “Inverse theorems for some linear positive operators using beta and Baskakov basis functions”, AIP Conference Proceedings, 2364 (2021) | DOI

[21] Mishra V. N., Khatri K., Mishra L. N., Deepmala, “Inverse result in simultaneous approximation by Baskakov-Durrmeyer-Stancu operators”, J. of Inequalities and Applications, 586 (2013) | DOI | MR | Zbl

[22] Mishra V. N., Yadav R., “Some estimations of summation-integral-type operators”, Tbilisi Mathematical J., 11:3 (2018), 175–191 | DOI | MR | Zbl

[23] Oruc H., Phillips G. M., “q-Bernstein polynomials and Bezier curves”, J. of Computational and Applied Mathematics, 151:1 (2003), 1–2 | DOI | MR

[24] Ozarslan M. A., Aktuglu H., “Local approximation properties for certain King type operators”, Filomat, 27:1 (2013), 173–181 | DOI | MR | Zbl

[25] Shaw S. Y., Liaw W. C., Lin Y. L., “Rates for approximation of functions in $BV[a,b]$ and $DBV[a,b]$ by positive linear operators”, Chinese J. of Mathematics, 1993, 171–193 | MR | Zbl

[26] Szasz O., “Generalization of S. Bernstein's polynomials to the infinite interval”, J. Res. Nat. Bur. Standards, 1950, no. 45, 239–245 | DOI | MR | Zbl

[27] Totik V., “Approximation by Szasz-Mirakjan-Kantorovich operators in $L_p$ ($p > 1$)”, Analysis Mathematica, 9:2 (1983), 147–167 | DOI | MR | Zbl

[28] Tasdelen F., Aktas R., Altin A., “A Kantorovich type of Szasz operators including Brenke-type polynomials”, Abstract and Applied Analysis, 2012, Hindawi, 2012 | DOI | MR

[29] Varma S., Sucu S., Icos G., “Generalization of Szasz operators involving Brenke type polynomials”, Computers and Mathematics with Applications, 64:2 (2012), 121–127 | DOI | MR | Zbl

[30] Weierstrass K., “On the analytical representability of so-called arbitrary functions of a real variable”, Session Reports of the Royal Prussian Academy of Sciences at Berlin, 1885, no. 2, 633–639

[31] Yadav R., Meher R., Mishra V. N., “Results on bivariate Szasz-Mirakjan type operators in polynomial weight spaces”, Mathematics in Engineering, Science and Aerospace (MESA), 11:4 (2020), 939–957

[32] Yadav R., Meher R., Mishra V. N., “Quantitative estimations of bivariate summation-integral-type operators”, Mathematical Methods in the Applied Sciences (MMAS), 42:18 (2019), 7172–7191 | DOI | MR | Zbl

[33] Yadav R., Meher R., Mishra V. N., “Further approximations on Durrmeyer modification of Szasz-Mirakjan operators”, European J. of Pure and Applied Mathematics, 13:5 (2020), 1306–1324 | DOI | MR