Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2022_25_2_a6, author = {S. Chaghoub and D. Benterki}, title = {An efficient logarithmic barrier method without line search}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {193--207}, publisher = {mathdoc}, volume = {25}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2022_25_2_a6/} }
TY - JOUR AU - S. Chaghoub AU - D. Benterki TI - An efficient logarithmic barrier method without line search JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2022 SP - 193 EP - 207 VL - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2022_25_2_a6/ LA - ru ID - SJVM_2022_25_2_a6 ER -
S. Chaghoub; D. Benterki. An efficient logarithmic barrier method without line search. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 2, pp. 193-207. http://geodesic.mathdoc.fr/item/SJVM_2022_25_2_a6/
[1] Bai Y., El Ghami M., Roos C., “A comparative study of kernel functions for primal-dual interior point algorithms in linear optimization”, SIAM J. Optim., 15:1 (2005), 101–128 | DOI | MR
[2] Belabbaci A., Djebbar B., Mokhtari A., “Optimization of a strictly concave quadratic form”, Proc. 4th Intern. Conf. on Applied Operational Research (Bangkok, Thailand, 2012), 16–20
[3] Belabbaci A., Djebbar B., “Algorithm and separating method for the optimization of quadratic functions”, Int. J. Computing Science and Mathematics, 8:2 (2017), 183–192 | DOI | MR | Zbl
[4] Ben-Daya M., Al-Sultan K. S., “A new penalty function algorithm for convex quadratic programming”, European J. of Operational Research, 101:1 (1997), 155–163 | DOI | MR | Zbl
[5] Benterki D., Crouzeix J. P., Merikhi B., “A numerical feasible interior point method for linear semidefinite programs”, RAIRO-Operations Research, 41 (2007), 49–59 | DOI | MR | Zbl
[6] Boudjellal N., Roumili H., Benterki D., “A primal-dual interior point algorithm for convex quadratic programming based on a new parametric kernel function”, Optimization, 2020 | DOI | MR
[7] Cherif L. B., Merikhi B., “A penalty method for nonlinear programming”, RAIRO-Operations Research, 53 (2019), 29–38 | DOI | MR | Zbl
[8] Chikhaoui A., Djebbar B., Belabbaci A., Mokhtari A., “Optimization of a quadratic function under its canonical form”, Asian J. of Applied Sciences, 2:6 (2009), 499–510 | DOI
[9] Crouzeix J. P., Merikhi B., “A logarithm barrier method for semi-definite programming”, RAIRO-Operations Research, 42 (2008), 123–139 | DOI | MR | Zbl
[10] Dikin I. I., “Iterative solution of problems of linear and quadratic programming”, Dokl. Akad. Nauk SSSR, 174 (1967), 747–748 | MR | Zbl
[11] Dozzi M., Méthodes non linéaires et stochastiques de la recherche opérationnelle https://iecl.univ-lorraine.fr Marco.Dozzi
[12] Frank M., Wolfe P., “An algorithm for quadratic programming”, Naval Research Logistics Quarterly, 3:1–2 (1956), 95–110 | DOI | MR
[13] Gartner B., Schonherr S., Smallest Enclosing Circles – An Exact and Generic Implementation in C++, 2016 ftp://ftp.inf.fu-berlin.de/pub/reports/tr-b-98-05.ps.gz
[14] Karmarkar N. K., “A new polynomial-time algorithm for linear programming”, Proc. 16th Annual ACM Symposium on Theory of Computing, Combinatorica, v. 4, 1984, 373–395 | MR | Zbl
[15] Leulmi A., Leulmi S., “Logarithmic barrier method via minorant function for linear programming”, J. of Siberian Federal University. Mathematics and Physics, 12:2 (2019), 191–201 | DOI | MR | Zbl
[16] Leulmi A., Merikhi B., Benterki D., “Study of a logarithmic barrier approach for linear semidefinite programming”, J. of Siberian Federal University. Mathematics and Physics, 11:3 (2018), 300–312 | DOI | MR | Zbl
[17] Menniche L., Benterki D., “A logarithmic barrier approach for linear programming”, J. of Computational and Applied Mathematics. Elsevier, 312 (2017), 267–275 | DOI | MR | Zbl
[18] Roos C., Terlaky T., Vial J. P., Theory and Algorithms for Linear Optimization: An Interior Point Approach, Wiley, Chichester, 1997 | MR | Zbl
[19] Vaidya P. M., “An algorithm for linear programming which requires arithmetic operations”, Proc. 19th Annual ACM Symposium Theory of Computing, 1987, 29–38 | MR
[20] Wolfe P., “The simplex method for quadratic programming”, Econometrica: J. of the Econometric Society, 27:3 (1959), 382–398 | DOI | MR | Zbl
[21] Wolkowicz H., Styan G. P. H., “Bounds for eigenvalues using traces”, Linear Algebra and Appl., 29 (1980), 471–506 | DOI | MR | Zbl
[22] Wright S. J., Primal-dual Interior-point Methods, SIAM, 1997 | MR | Zbl
[23] Ye Y., Tse E., “An extension of Karmarkar's projective algorithm for convex quadratic programming”, Mathematical Programming, 44 (1989), 157–179 | DOI | MR | Zbl
[24] Ye Y., Tse E., A Polynomial Algorithm for Convex Quadratic Programming, Stanford University, 1986