Behavior change a virus-resistant HIV-1 mathematical model
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 2, pp. 173-192.

Voir la notice de l'article provenant de la source Math-Net.Ru

Resistance to HIV-1 disease developed by some exposed individuals has shown a promising sign in the fight against HIV-1 infection. Behavior change has also become one of the most important protection strategies against HIV-1 pandemic, but both of them have been widely neglected by mathematical modelers. In this paper, a new virus resistance HIV-1 mathematical model incorporating behavior change is formulated and analyzed rigorously for both partial and total abstinence cases. The calculated reproduction number is used to establish the local stability of the disease-free equilibrium points using the approach of Watmough and Driessche in both cases. Using appropriate demographic and epidemiological data for South Africa in the numerical simulation, the positive effect of behavior change in the midst of HIV-1 resistance is thoroughly examined, and this strategy is absolutely effective in dealing with the threat of HIV-1. This work also provides a better result than what is obtainable in the majority of the referenced related works.
@article{SJVM_2022_25_2_a5,
     author = {R. Musa and R. Willie and N. Parumasur},
     title = {Behavior change a virus-resistant {HIV-1} mathematical model},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {173--192},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2022_25_2_a5/}
}
TY  - JOUR
AU  - R. Musa
AU  - R. Willie
AU  - N. Parumasur
TI  - Behavior change a virus-resistant HIV-1 mathematical model
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2022
SP  - 173
EP  - 192
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2022_25_2_a5/
LA  - ru
ID  - SJVM_2022_25_2_a5
ER  - 
%0 Journal Article
%A R. Musa
%A R. Willie
%A N. Parumasur
%T Behavior change a virus-resistant HIV-1 mathematical model
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2022
%P 173-192
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2022_25_2_a5/
%G ru
%F SJVM_2022_25_2_a5
R. Musa; R. Willie; N. Parumasur. Behavior change a virus-resistant HIV-1 mathematical model. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 2, pp. 173-192. http://geodesic.mathdoc.fr/item/SJVM_2022_25_2_a5/

[1] Global AIDS Update 2016, , UNAIDS, 2016 https://www.unaids.org

[2] Altman L. K., A New AIDS Mystery: Prostitutes Who Have Remained Immune, NYTimes, 2020

[3] Biasin M., Clerici M., Piacentini L., “Innate immunity in resistance to HIV infection”, J. Infect. Dis., 202:3 (2010), 361–365

[4] Blackwell T., “Blackwell on Health: Montreal researchers discover why some prostitutes evade HIV”, National Post, 38:4 (2012), 274–283

[5] Coates T. J., Richter L., Caceres C., “Behavioural strategies to reduce HIV transmission: how to make them work better”, The Lancet, 372:9639 (2008), 669–684 | DOI

[6] Coleman M. T., Pasternak R. H., “Effective strategies for behavior change”, Primary Care, 39:2 (2012), 281–305 | DOI

[7] Diekmann O., Heesterbeek J. A. P., Metz J. A., “On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations”, J. Math. Biology, 28:4 (1990), 365–382 | DOI | MR | Zbl

[8] Easterbrook P. J., “Long-term non-progression in HIV infection: definitions and epidemiological issues”, J. Infect., 38:2 (1999), 71–73 | DOI

[9] Mendus E., Ring T., “A genetic mutation that blocks HIV may hold the key to future treatment and, perhaps, a cure”, Hiv Plus Mag, 2016 https://www.hivplusmag.com/research-breakthroughs/2016/3/23/anyone-immune-hiv

[10] HIV/AIDS and human rights, , UNAIDS, 2018 http://www.unaids.org

[11] Jia J., Xiao J., “Stability analysis of a disease resistance SEIRS model with nonlinear incidence rate”, Advances in Difference Equations, 2018, 75(2018) | DOI | MR

[12] List of countries by HIV/AIDS adult prevalence rate, https://en.wikipedia.org/wiki/List_of_countries_by_HIV/AIDS_adult_prevalence_rate

[13] Karim S. A., Karim Q. A., HIV/AIDS in South Africa, Cambridge University Press, 2010

[14] Khanh N. H., “Stability analysis of an influenza virus model with disease resistance”, J. Egyptian Mathematical Society, 24:2 (2016), 193–199 | DOI | MR | Zbl

[15] Afassinou K., Chirove F., Govinder K. S., “Pre-exposure prophylaxis and antiretroviral treatment interventions with drug resistance”, Mathematical Biosciences, 285 (2017), 92–101 | DOI | MR | Zbl

[16] Singh M., In Life, Man Immune To HIV Helped Scientists Fight Virus, NPR, 2013

[17] Marmor M., Hertzmark K., Thomas S. M., Halkitis P. N., Vogler M., “Resistance to HIV infection”, J. Urban Health, 83:1 (2006), 5–17 | DOI

[18] Mastahun M., Abdurahman X., “Optimal control of an HIV/AIDS epidemic model with infective immigration and behavioral change”, Applied Mathematics, 8:1 (2017), 87–106 | DOI

[19] Paxton W. A., Martin S. R., Tse D. et al., “Relative resistance to HIV-1 infection of CD4 lymphocytes from persons who remain uninfected despite multiple high-risk sexual exposures”, Nature Medicine, 2:4 (1996), 412–417 | DOI

[20] Phillips A. F., Pirkle C. M., “Moving beyond behaviour: advancing HIV risk prevention epistemologies and interventions (A report on the state of the literature)”, Global Public Health, 6:6 (2011), 577–592 | DOI

[21] Rabiu M., Willie R., Parumasur N., “Mathematical analysis of a disease-resistant model with imperfect vaccine, quarantine and treatment”, Ricerche di Matematica, 69 (2020), 603–627 | DOI | MR | Zbl

[22] Rabiu M., Ibrahim M. O., Akinyemi S. T., “Mathematical modeling of the effect of therapeutic vaccine in the control of Dengue fever”, J. Nigerian Association of Mathematical Physics, 33 (2016), 377–386

[23] Rabiu M., Akinyemi S. T., “Global analysis of Dengue fever in a variable population”, J. Nigerian Association of Mathematical Physics, 33 (2016), 363–376

[24] Report on the global AIDS epidemic, , UNAIDS, 2012 http://www.unaids.org

[25] Samson M., Libert F., Doranz B. J. et al., “Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene”, Nature, 382:6593 (1996), 722–725 | DOI

[26] Shelton J. D., Halperin D. T., Nantulya V. et al., “Partner reduction is crucial for balanced “ABC” approach to HIV prevention”, BMJ, 328:7444 (2004), 891–893 | DOI

[27] Mid-Year Population Estimaties, Statistical release: P0302, 2019 http://www.statssa.gov.za/publications/P0302/P03022019.pdf

[28] Scutti S., “Why some people are naturally immune to HIV”, Medical Daily, 180:1–2 (2014), 29–48

[29] Why Some People May Be Immune to HIV-1: Clues, University of Minnesota: Science Daily, 2014 www.sciencedaily.com/releases/2014/11/141120141750.htm

[30] Van den Driessche P., Watmough J., “Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission”, Mathematical Biosciences, 180:1–2 (2002), 29–48 | MR | Zbl

[31] Zhang K., Ji Y., Pan Q. et al., “Sensitivity analysis and optimal treatment control for a mathematical model of Human Papillomavirus infection”, AIMS Mathematics, 5:3 (2020), 2646–2670 | DOI | MR | Zbl