Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2022_25_2_a2, author = {K. F. Koledina and I. M. Gubaydullin and S. N. Koledin}, title = {Mathematical modeling and computational aspects of multi-criteria optimization of the conditions of the laboratory catalytic reaction}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {129--140}, publisher = {mathdoc}, volume = {25}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2022_25_2_a2/} }
TY - JOUR AU - K. F. Koledina AU - I. M. Gubaydullin AU - S. N. Koledin TI - Mathematical modeling and computational aspects of multi-criteria optimization of the conditions of the laboratory catalytic reaction JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2022 SP - 129 EP - 140 VL - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2022_25_2_a2/ LA - ru ID - SJVM_2022_25_2_a2 ER -
%0 Journal Article %A K. F. Koledina %A I. M. Gubaydullin %A S. N. Koledin %T Mathematical modeling and computational aspects of multi-criteria optimization of the conditions of the laboratory catalytic reaction %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2022 %P 129-140 %V 25 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2022_25_2_a2/ %G ru %F SJVM_2022_25_2_a2
K. F. Koledina; I. M. Gubaydullin; S. N. Koledin. Mathematical modeling and computational aspects of multi-criteria optimization of the conditions of the laboratory catalytic reaction. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 2, pp. 129-140. http://geodesic.mathdoc.fr/item/SJVM_2022_25_2_a2/
[1] Aleksandrov V. M., “Optimal resource consumption control of perturbed systems”, Numerical Analysis and Applications, 10:3 (2017), 185–197 | DOI | MR
[2] Aleksandrov V. M., “Computing of optimal inertial control of a linear system”, Numerical Analysis and Applications, 8:1 (2015), 1–12 | DOI | MR | Zbl
[3] Koledina K. F., Koledin S. N., Karpenko A. P., Gubaydullin I. M., Vovdenko M. K., “Multi-objective optimization of chemical reaction conditions based on a kinetic model”, J. of Mathematical Chemistry, 57:1 (2019), 484–493 | DOI | Zbl
[4] Voitkevich S. A., 865 dushistykh veschestv dlya parfyumerii i bytovoi khimii, Pischevaya promyshlennost, M., 1994
[5] Baiguzina A. R., Gimaletdinova L. I., Khusnutdinov R. I., “Sintez benzilalkilovykh efirov mezhmolekulyarnoi degidratatsiei benzilovogo spirta s alifaticheskimi spirtami pod deistviem medsoderzhaschikh katalizatorov”, Zhurn. organicheskoi khimii, 54:8 (2018), 1140–1146
[6] Yu J.-L., Wang H., Zou K.-F. et al., “Selective synthesis of unsymmetrical ethers from different alcohols catalyzed by sodium bisulfite”, Tetrahedron, 69:1 (2013), 310–315 | DOI
[7] Khusnutdinov R. I., Bayguzina A. R., Mukminov R. R., Gimaletdinova L. I., Dzhemilev U. M., “Synthesis of 1-adamantyl alkyl ethers by intermolecular dehydration of 1-adamantanol with alcohols catalyzed by copper compounds”, Arkivoc, 2014:4 (2014), 342–349 | DOI
[8] Koledina K. F., Gubaidullin I. M., Koledin S. N. i dr., “Kinetika i mekhanizm sinteza benzilbutilovogo efira v prisutstvii medsoderzhaschikh katalizatorov”, Zhurn. fiz. khimii, 93:11 (2019), 1–6
[9] Koledina K. F., Gubaidullin I. M., “Kinetika i mekhanizm kataliticheskikh reaktsii gidroalyuminirovaniya olefinov alyuminiiorganicheskimi soedineniyami”, Zhurn. fiz. khimii, 90:5 (2016), 671–678
[10] Koledina K. F., Koledin S. N., Schadneva N. A., Mayakova Y. Y., Gubaydullin I. M., “Kinetic model of the catalytic reaction of dimethylcarbonate with alcohols in the presence CO2(CO)8 AND W(CO)6”, Reaction Kinetics, Mechanisms and Catalysis, 121:2 (2017), 1–14 | DOI
[11] Koledina K. F., Koledin S. N., Schadneva N. A., Gubaidullin I. M., “Kinetika i mekhanizm kataliticheskoi reaktsii spirtov s dimetilkarbonatom”, Zhurn. fiz. khimii, 91:3 (2017), 422–428
[12] Gear C. V., Numerical Initial Value Problems in Ordinary Differential Equations, Pentice-Hall, Englewood Cliffs, 1971 | MR
[13] Poli R., Langdon W. B., McPhee N. F., A Field Guide to Genetic Programming, , 2008 http://www.gp-field-guide.org.uk
[14] Attetkov A. V., Galkin S. V., Zarubin V. S., Metod Khuka-Dzhivsa. Metody optimizatsii, Izd-vo MGTU im. N.E. Baumana, M., 2003
[15] Kalyanmoy D., Pratap A., Agarwal S., Meyarivan T., “A fast and elitist multiobjective genetic algorithm: NSGA-II”, IEEE transactions on evolutionary computation, 6:2 (2002), 182–197 | DOI
[16] Sobol I. M., Statnikov R. B., Vybor optimalnykh parametrov v zadachakh so mnogimi kriteriyami: uchebnoe posobie dlya vuzov, Drofa, M., 2006
[17] Ryu J. H., Kim S., Wan H., “Pareto front approximation with adaptive weighted sum method in multiobjective simulation optimization”, Proc. of the 2009 Winter Simulation Conference (WSC) (Austin, 2009), 623–633 | Zbl
[18] Karpenko A. P., Sovremennye algoritmy poiskovoi optimizatsii. Algoritmy, vdokhnovlennye prirodoi, uchebnoe posobie, Izd-vo MGTU im. N.E. Baumana, M., 2014
[19] Koledina K. F., Koledin S. N., Gubaydullin I. M., “Optimal conditions for single-cycle and multi-cycle reactions based on a kinetic model”, J. Phys.: Conf. Ser., 2018, 1096 012077
[20] Spivak S. I., Koledina K. F., Koledin S. N., Gubaidullin I. M., “Informatsionno-vychislitelnaya analiticheskaya sistema teoreticheskoi optimizatsii kataliticheskikh protsessov”, Prikladnaya informatika, 2017, no. 1(67), 39–49 | MR
[21] Deb K., Mohan M., Mishra S., “Towards a quick computation of well-spread Pareto-optimal solutions”, Evolutionary Multi-Criterion Optimization, Springer, 2003, 222–236 | DOI | MR | Zbl
[22] Koledina K. F., Koledin S. N., Gubaydullin I. M., “Automated system for identification of conditions for homogeneous and heterogeneous reactions in multiobjective optimization problems”, Numerical Analysis and Applications, 12:2 (2019), 116–125 | DOI | MR
[23] Titarenko S. S., Hildyard M., Kulikov I. M. et al., “Multilevel parallelization: grid methods for solving direct and inverse problems”, Communications in Computer and Information Science, Springer, 2016, 118–131 | DOI
[24] Kulikov I., Chernykh I., Tutukov A., “A new hydrodynamic model for numerical simulation of interacting galaxies on Intel Xeon Phi supercomputers”, J. Phys.: Conf. Ser., 719 (2016), 012006 | DOI
[25] Alonso P., Argueso F., Cortina R., Ranilla J., Vidal A. M., “Non-linear parallel solver for detecting point sources in CMB maps using Bayesian techniques”, J. of Mathematical Chemistry, 51:4 (2013), 1153–1163 | DOI | MR | Zbl