Mathematical modeling and computational aspects of multi-criteria optimization of the conditions of the laboratory catalytic reaction
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 2, pp. 129-140.

Voir la notice de l'article provenant de la source Math-Net.Ru

Based on the previously developed kinetic model of the catalytic reaction of the synthesis of benzylalkyl ethers, two- and three-criteria optimization of the conditions was carried out. The problem of multicriteria optimization is formulated with the definition of variable parameters: reaction temperature, proportionality coefficient of the starting reagents, reaction time; optimality criteria: yield of a target and by-products; restrictions on variable parameters. The computational aspects of multicriteria optimization by a grid algorithm (sensing) are examined. The calculated front values (optimality criteria) and Pareto sets (variable parameters) determine the exhaustive values of the reaction conditions and allow the decision maker to choose the most optimal ones. This made it possible to give technological recommendations for the industrial implementation of the synthesis of a benzyl butyl ether in the presence of a metal complex catalyst with a maximum yield of target products and a minimum content of by-products.
@article{SJVM_2022_25_2_a2,
     author = {K. F. Koledina and I. M. Gubaydullin and S. N. Koledin},
     title = {Mathematical modeling and computational aspects of multi-criteria optimization of the conditions of the laboratory catalytic reaction},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {129--140},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2022_25_2_a2/}
}
TY  - JOUR
AU  - K. F. Koledina
AU  - I. M. Gubaydullin
AU  - S. N. Koledin
TI  - Mathematical modeling and computational aspects of multi-criteria optimization of the conditions of the laboratory catalytic reaction
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2022
SP  - 129
EP  - 140
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2022_25_2_a2/
LA  - ru
ID  - SJVM_2022_25_2_a2
ER  - 
%0 Journal Article
%A K. F. Koledina
%A I. M. Gubaydullin
%A S. N. Koledin
%T Mathematical modeling and computational aspects of multi-criteria optimization of the conditions of the laboratory catalytic reaction
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2022
%P 129-140
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2022_25_2_a2/
%G ru
%F SJVM_2022_25_2_a2
K. F. Koledina; I. M. Gubaydullin; S. N. Koledin. Mathematical modeling and computational aspects of multi-criteria optimization of the conditions of the laboratory catalytic reaction. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 2, pp. 129-140. http://geodesic.mathdoc.fr/item/SJVM_2022_25_2_a2/

[1] Aleksandrov V. M., “Optimal resource consumption control of perturbed systems”, Numerical Analysis and Applications, 10:3 (2017), 185–197 | DOI | MR

[2] Aleksandrov V. M., “Computing of optimal inertial control of a linear system”, Numerical Analysis and Applications, 8:1 (2015), 1–12 | DOI | MR | Zbl

[3] Koledina K. F., Koledin S. N., Karpenko A. P., Gubaydullin I. M., Vovdenko M. K., “Multi-objective optimization of chemical reaction conditions based on a kinetic model”, J. of Mathematical Chemistry, 57:1 (2019), 484–493 | DOI | Zbl

[4] Voitkevich S. A., 865 dushistykh veschestv dlya parfyumerii i bytovoi khimii, Pischevaya promyshlennost, M., 1994

[5] Baiguzina A. R., Gimaletdinova L. I., Khusnutdinov R. I., “Sintez benzilalkilovykh efirov mezhmolekulyarnoi degidratatsiei benzilovogo spirta s alifaticheskimi spirtami pod deistviem medsoderzhaschikh katalizatorov”, Zhurn. organicheskoi khimii, 54:8 (2018), 1140–1146

[6] Yu J.-L., Wang H., Zou K.-F. et al., “Selective synthesis of unsymmetrical ethers from different alcohols catalyzed by sodium bisulfite”, Tetrahedron, 69:1 (2013), 310–315 | DOI

[7] Khusnutdinov R. I., Bayguzina A. R., Mukminov R. R., Gimaletdinova L. I., Dzhemilev U. M., “Synthesis of 1-adamantyl alkyl ethers by intermolecular dehydration of 1-adamantanol with alcohols catalyzed by copper compounds”, Arkivoc, 2014:4 (2014), 342–349 | DOI

[8] Koledina K. F., Gubaidullin I. M., Koledin S. N. i dr., “Kinetika i mekhanizm sinteza benzilbutilovogo efira v prisutstvii medsoderzhaschikh katalizatorov”, Zhurn. fiz. khimii, 93:11 (2019), 1–6

[9] Koledina K. F., Gubaidullin I. M., “Kinetika i mekhanizm kataliticheskikh reaktsii gidroalyuminirovaniya olefinov alyuminiiorganicheskimi soedineniyami”, Zhurn. fiz. khimii, 90:5 (2016), 671–678

[10] Koledina K. F., Koledin S. N., Schadneva N. A., Mayakova Y. Y., Gubaydullin I. M., “Kinetic model of the catalytic reaction of dimethylcarbonate with alcohols in the presence CO2(CO)8 AND W(CO)6”, Reaction Kinetics, Mechanisms and Catalysis, 121:2 (2017), 1–14 | DOI

[11] Koledina K. F., Koledin S. N., Schadneva N. A., Gubaidullin I. M., “Kinetika i mekhanizm kataliticheskoi reaktsii spirtov s dimetilkarbonatom”, Zhurn. fiz. khimii, 91:3 (2017), 422–428

[12] Gear C. V., Numerical Initial Value Problems in Ordinary Differential Equations, Pentice-Hall, Englewood Cliffs, 1971 | MR

[13] Poli R., Langdon W. B., McPhee N. F., A Field Guide to Genetic Programming, , 2008 http://www.gp-field-guide.org.uk

[14] Attetkov A. V., Galkin S. V., Zarubin V. S., Metod Khuka-Dzhivsa. Metody optimizatsii, Izd-vo MGTU im. N.E. Baumana, M., 2003

[15] Kalyanmoy D., Pratap A., Agarwal S., Meyarivan T., “A fast and elitist multiobjective genetic algorithm: NSGA-II”, IEEE transactions on evolutionary computation, 6:2 (2002), 182–197 | DOI

[16] Sobol I. M., Statnikov R. B., Vybor optimalnykh parametrov v zadachakh so mnogimi kriteriyami: uchebnoe posobie dlya vuzov, Drofa, M., 2006

[17] Ryu J. H., Kim S., Wan H., “Pareto front approximation with adaptive weighted sum method in multiobjective simulation optimization”, Proc. of the 2009 Winter Simulation Conference (WSC) (Austin, 2009), 623–633 | Zbl

[18] Karpenko A. P., Sovremennye algoritmy poiskovoi optimizatsii. Algoritmy, vdokhnovlennye prirodoi, uchebnoe posobie, Izd-vo MGTU im. N.E. Baumana, M., 2014

[19] Koledina K. F., Koledin S. N., Gubaydullin I. M., “Optimal conditions for single-cycle and multi-cycle reactions based on a kinetic model”, J. Phys.: Conf. Ser., 2018, 1096 012077

[20] Spivak S. I., Koledina K. F., Koledin S. N., Gubaidullin I. M., “Informatsionno-vychislitelnaya analiticheskaya sistema teoreticheskoi optimizatsii kataliticheskikh protsessov”, Prikladnaya informatika, 2017, no. 1(67), 39–49 | MR

[21] Deb K., Mohan M., Mishra S., “Towards a quick computation of well-spread Pareto-optimal solutions”, Evolutionary Multi-Criterion Optimization, Springer, 2003, 222–236 | DOI | MR | Zbl

[22] Koledina K. F., Koledin S. N., Gubaydullin I. M., “Automated system for identification of conditions for homogeneous and heterogeneous reactions in multiobjective optimization problems”, Numerical Analysis and Applications, 12:2 (2019), 116–125 | DOI | MR

[23] Titarenko S. S., Hildyard M., Kulikov I. M. et al., “Multilevel parallelization: grid methods for solving direct and inverse problems”, Communications in Computer and Information Science, Springer, 2016, 118–131 | DOI

[24] Kulikov I., Chernykh I., Tutukov A., “A new hydrodynamic model for numerical simulation of interacting galaxies on Intel Xeon Phi supercomputers”, J. Phys.: Conf. Ser., 719 (2016), 012006 | DOI

[25] Alonso P., Argueso F., Cortina R., Ranilla J., Vidal A. M., “Non-linear parallel solver for detecting point sources in CMB maps using Bayesian techniques”, J. of Mathematical Chemistry, 51:4 (2013), 1153–1163 | DOI | MR | Zbl