Multiplicative model the allocation of components of the time series
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 2, pp. 111-127.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the substantiation of a multiplicative model of time series decomposition based on the axiomatic approach. In this model, the original time series is represented as a component-by-component product of the selected components. The components are described in the form of monomials. To determine the values of variable monomials, a function is minimized that measures deviations from the unit of all components of the product of the selected components from the values of the corresponding components of the original series. In the model under consideration, all the components of the original series and the selected components are positive numbers. Four requirements are formulated for methods of selecting components. It is proved that all these requirements are met if and only if the time series decomposition is performed by a multiplicative model. As an example, we consider a model for selecting trends and seasonal fluctuations from monthly series of efficient data.
@article{SJVM_2022_25_2_a1,
     author = {V. I. Zorkal'tsev and M. Polkovskaya},
     title = {Multiplicative model the allocation of components of the time series},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {111--127},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2022_25_2_a1/}
}
TY  - JOUR
AU  - V. I. Zorkal'tsev
AU  - M. Polkovskaya
TI  - Multiplicative model the allocation of components of the time series
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2022
SP  - 111
EP  - 127
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2022_25_2_a1/
LA  - ru
ID  - SJVM_2022_25_2_a1
ER  - 
%0 Journal Article
%A V. I. Zorkal'tsev
%A M. Polkovskaya
%T Multiplicative model the allocation of components of the time series
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2022
%P 111-127
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2022_25_2_a1/
%G ru
%F SJVM_2022_25_2_a1
V. I. Zorkal'tsev; M. Polkovskaya. Multiplicative model the allocation of components of the time series. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 2, pp. 111-127. http://geodesic.mathdoc.fr/item/SJVM_2022_25_2_a1/

[1] Anderson T., Statisticheskii analiz vremennykh ryadov, Mir, M., 1976

[2] Boks Dzh., Dzhenkins G., Analiz vremennykh ryadov: prognoz i upravlenie, Mir, M., 1974

[3] Kendel M., Vremennye ryady, Finansy i statistika, M., 1981 | MR

[4] Suslov V. I., Ibragimov N. M., Talysheva L. P., Tsyplakov A. A., Ekonometriya, uchebnoe posobie, Izd-vo SO RAN, Novosibirsk, 2005

[5] Khennan E., Mnogomernye vremennye ryady, Mir, M., 1974

[6] Chetyrkin E. M., Statisticheskie metody prognozirovaniya, Statistika, M., 1977

[7] Commandeur J. J.F., Koopman S. J., An Introduction to State Space Time Series Analysis, Oxford University Press, Oxford, 2007 | MR | Zbl

[8] Floyd J. E., Statistics for Economists: a Beginning, University of Toronto, Toronto, 2010

[9] Harris R. and Sollis R., Applied Time Series Modelling and Forecasting, John Wiley Sons Ltd, 2003

[10] Woodward W. A., Gray H. L., Elliott A. C., Applied Time Series Analysis with R, 2nd Edition, CRC Press, Taylor Francis Group, 2017 | MR

[11] Belykh T. V., Zorkaltsev V. I., Polkovskaya M. N., “Sravnitelnyi analiz metodov prognozirovaniya tsen na selskokhozyaistvennuyu produktsiyu”, Tsifrovye tekhnologii i sistemy v selskom khozyaistve, Materialy mezhdunarodnoi nauchno-prakticheskoi konferentsii, 2019, 47–54

[12] Zorkaltsev V. I., Indeksy tsen i inflyatsionnye protsessy, Nauka, Novosibirsk, 1996

[13] Zorkaltsev V. I., Polkovskaya M. N., “Additivnaya i multiplikativnaya modeli vyyavleniya trenda i sezonnykh kolebanii: prilozhenie multiplikativnoi modeli k dinamike tsen na selskokhozyaistvennuyu produktsiyu”, Upravlenie bolshimi sistemami, 86 (2020), 98–115

[14] Odiyako N. N., Golodnaya N. Yu., “Primenenie additivnoi i multiplikativnoi modelei prognozirovaniya”, Ekonomika i predprinimatelstvo, 2013, no. 12–1(41), 667–674

[15] Hyndman R. J., Koehler A. B., Ord J. K., Snyder R. D., Forecasting with Exponential Smoothing, Springer Series in Statistics, Springer-Verlag, Berlin–Heidelberg, 2008 | DOI | Zbl

[16] Polkovskaya M. N., “Situation management of agricultural production based on the prediction of prices for agricultural products”, Proc. of the VIth Int. Workshop «Critical Infrastructures: Contingency Management, Intelligent, Agent-Based, Cloud Computing and Cyber Security», 2019, 83–89

[17] Daffin R., Piterson E., Zener K., Geometricheskoe programmirovanie, Mir, M., 1972

[18] Zangvill U., Nelineinoe programmirovanie. Edinyi podkhod, Sovetskoe radio, M., 1973

[19] Zorkaltsev V. I., Metod naimenshikh kvadratov: geometricheskie svoistva, alternativnye podkhody, prilozheniya, Nauka, Novosibirsk, 1995 | MR

[20] Zorkaltsev V. I., “Obosnovanie vybora regressionnoi modeli dlya analiza i prognozirovaniya protsessov toplivosnabzheniya s sezonnoi sostavlyayuschei”, Izvestiya AN SSSR. Energetika i transport, 1978, no. 3, 135–143

[21] Zorkaltsev V. I., Mnogoletnie variatsii temperatur i ikh vliyanie na ekonomiku i energetiku, Geo, Novosibirsk, 2017

[22] Zorkaltsev V. I., Metody prognozirovaniya i analiza effektivnosti funktsionirovaniya sistemy toplivosnabzheniya, Nauka, M., 1980

[23] Henshaw R. C., “Application of the general linear model to seasonal adjustment of economic time series”, Econometrica, 34 (1966), 381–395 | DOI

[24] Gauss K. F., Izbrannye geofizicheskie sochineniya, v. 1, Geoizdat, M., 1957

[25] Lyusternik L. A., Sobolev V. N., Elementy funktsionalnogo analiza, Nauka, M., 1965 | MR

[26] Lovell M. C., “Seasonal adjustment of economic time series and multiple regression analysis”, J. of Amer. Statist. Assoc., 58 (1963), 993–1010 | DOI | MR | Zbl