Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2022_25_1_a4, author = {V. D. Irtegov and T. N. Titorenko}, title = {On one approach to the qualitative analysis of nonlinear dynamical systems}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {59--75}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2022_25_1_a4/} }
TY - JOUR AU - V. D. Irtegov AU - T. N. Titorenko TI - On one approach to the qualitative analysis of nonlinear dynamical systems JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2022 SP - 59 EP - 75 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2022_25_1_a4/ LA - ru ID - SJVM_2022_25_1_a4 ER -
V. D. Irtegov; T. N. Titorenko. On one approach to the qualitative analysis of nonlinear dynamical systems. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 1, pp. 59-75. http://geodesic.mathdoc.fr/item/SJVM_2022_25_1_a4/
[1] Bogoyavlenskii O. I., “Integriruemye uravneniya Eilera na algebrakh Li, voznikayuschie v zadachakh matematicheskoi fiziki”, Izv. AN SSSR. Ser. matem., 48:5 (1984), 883–938 | MR
[2] Sokolov V. V., “Novyi integriruemyi sluchai dlya uravnenii Kirkhgofa”, Teoret. matem. fizika, 129:1 (2001), 31–37 | MR | Zbl
[3] Borisov A. V., Mamaev I. S., Sokolov V. V., “Novyi integriruemyi sluchai na”, Doklady RAN, 381:5 (2001), 614–615
[4] Sokolov V. V., Wolf T., “Integrable quadratic classical Hamiltonians on and”, J. Phys. A: Mat. Gen., 39:8 (2006), 1915–1926 | DOI | MR | Zbl
[5] Morozov V. P., “Topologiya sloenii Liuvillya sluchaev integriruemosti Steklova i Sokolova”, Matem. sbornik, 195:3 (2004), 69–114 | MR
[6] Akbarzadeh R., “Topological analysis corresponding to the Borisov-Mamaev-Sokolov integrable system on the Lie algebra”, Regular and Chaotic Dynamics, 21:1 (2016), 1–17 | DOI | MR | Zbl
[7] Akbarzade R., “Topologiya izoenergeticheskikh poverkhnostei integriruemogo sluchaya Borisova-Mamaeva-Sokolova na algebre Li”, Teoret. matem. fizika, 197:3 (2018), 385–396 | MR | Zbl
[8] Bolsinov A. V., Fomenko A. T., Integriruemye gamiltonovy sistemy. Geometriya. Topologiya. Klassifikatsiya, v. 1, Izd-kii dom «Udmurtskii universitet», Izhevsk, 1999
[9] Lyapunov A. M., Sobr. soch., v. 1, O postoyannykh vintovykh dvizheniyakh tela v zhidkosti, AN SSSR, M.–L., 1954
[10] Irtegov V. D., Invariantnye mnogoobraziya statsionarnykh dvizhenii i ikh ustoichivost, Nauka, Novosibirsk, 1985
[11] Irtegov V. D., Titorenko T. N., “Ob invariantnykh mnogoobraziyakh sistem s pervymi integralami”, Prikl. matem. i mekhanika, 73:4 (2009), 531–537 | MR | Zbl
[12] Banschikov A. V., Burlakova L. A., Irtegov V. D., Titorenko T. N., “Simvolnye vychisleniya v modelirovanii i kachestvennom analize dinamicheskikh sistem”, Vychislitelnye tekhnologii, 19:6 (2014), 3–18
[13] Irtegov V. D., Titorenko T. N., “Metody kompyuternoi algebry v issledovanii nelineinykh differentsialnykh sistem”, Zhurn. vychisl. matem. i mat. fiziki, 53:6 (2013), 1027–1040 | MR | Zbl
[14] Koks D., Littl Dzh., O'Shi D., Idealy, mnogoobraziya i algoritmy, Mir, M., 2000
[15] Lyapunov A. M., Sobr. soch., v. 2, Obschaya zadacha ob ustoichivosti dvizheniya, AN SSSR, M.-L., 1956 | MR