On one approach to the qualitative analysis of nonlinear dynamical systems
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 1, pp. 59-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

By an example of the investigation of the Euler equations on Lie algebras, we discuss an approach to the qualitative analysis of differential equations arising in a number of problems of mathematical physics, including rigid body dynamics. The approach proposed is based on a combination of methods of computer algebra and qualitative analysis of differential equations. We consider the applications of computer algebra in the problems of finding stationary invariant sets and studying their stability. For the equations under study, stationary invariant sets of various dimension have been found and their stability in the Lyapunov sense has been investigated.
@article{SJVM_2022_25_1_a4,
     author = {V. D. Irtegov and T. N. Titorenko},
     title = {On one approach to the qualitative analysis of nonlinear dynamical systems},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {59--75},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2022_25_1_a4/}
}
TY  - JOUR
AU  - V. D. Irtegov
AU  - T. N. Titorenko
TI  - On one approach to the qualitative analysis of nonlinear dynamical systems
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2022
SP  - 59
EP  - 75
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2022_25_1_a4/
LA  - ru
ID  - SJVM_2022_25_1_a4
ER  - 
%0 Journal Article
%A V. D. Irtegov
%A T. N. Titorenko
%T On one approach to the qualitative analysis of nonlinear dynamical systems
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2022
%P 59-75
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2022_25_1_a4/
%G ru
%F SJVM_2022_25_1_a4
V. D. Irtegov; T. N. Titorenko. On one approach to the qualitative analysis of nonlinear dynamical systems. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 1, pp. 59-75. http://geodesic.mathdoc.fr/item/SJVM_2022_25_1_a4/

[1] Bogoyavlenskii O. I., “Integriruemye uravneniya Eilera na algebrakh Li, voznikayuschie v zadachakh matematicheskoi fiziki”, Izv. AN SSSR. Ser. matem., 48:5 (1984), 883–938 | MR

[2] Sokolov V. V., “Novyi integriruemyi sluchai dlya uravnenii Kirkhgofa”, Teoret. matem. fizika, 129:1 (2001), 31–37 | MR | Zbl

[3] Borisov A. V., Mamaev I. S., Sokolov V. V., “Novyi integriruemyi sluchai na”, Doklady RAN, 381:5 (2001), 614–615

[4] Sokolov V. V., Wolf T., “Integrable quadratic classical Hamiltonians on and”, J. Phys. A: Mat. Gen., 39:8 (2006), 1915–1926 | DOI | MR | Zbl

[5] Morozov V. P., “Topologiya sloenii Liuvillya sluchaev integriruemosti Steklova i Sokolova”, Matem. sbornik, 195:3 (2004), 69–114 | MR

[6] Akbarzadeh R., “Topological analysis corresponding to the Borisov-Mamaev-Sokolov integrable system on the Lie algebra”, Regular and Chaotic Dynamics, 21:1 (2016), 1–17 | DOI | MR | Zbl

[7] Akbarzade R., “Topologiya izoenergeticheskikh poverkhnostei integriruemogo sluchaya Borisova-Mamaeva-Sokolova na algebre Li”, Teoret. matem. fizika, 197:3 (2018), 385–396 | MR | Zbl

[8] Bolsinov A. V., Fomenko A. T., Integriruemye gamiltonovy sistemy. Geometriya. Topologiya. Klassifikatsiya, v. 1, Izd-kii dom «Udmurtskii universitet», Izhevsk, 1999

[9] Lyapunov A. M., Sobr. soch., v. 1, O postoyannykh vintovykh dvizheniyakh tela v zhidkosti, AN SSSR, M.–L., 1954

[10] Irtegov V. D., Invariantnye mnogoobraziya statsionarnykh dvizhenii i ikh ustoichivost, Nauka, Novosibirsk, 1985

[11] Irtegov V. D., Titorenko T. N., “Ob invariantnykh mnogoobraziyakh sistem s pervymi integralami”, Prikl. matem. i mekhanika, 73:4 (2009), 531–537 | MR | Zbl

[12] Banschikov A. V., Burlakova L. A., Irtegov V. D., Titorenko T. N., “Simvolnye vychisleniya v modelirovanii i kachestvennom analize dinamicheskikh sistem”, Vychislitelnye tekhnologii, 19:6 (2014), 3–18

[13] Irtegov V. D., Titorenko T. N., “Metody kompyuternoi algebry v issledovanii nelineinykh differentsialnykh sistem”, Zhurn. vychisl. matem. i mat. fiziki, 53:6 (2013), 1027–1040 | MR | Zbl

[14] Koks D., Littl Dzh., O'Shi D., Idealy, mnogoobraziya i algoritmy, Mir, M., 2000

[15] Lyapunov A. M., Sobr. soch., v. 2, Obschaya zadacha ob ustoichivosti dvizheniya, AN SSSR, M.-L., 1956 | MR