On one method for modeling an nonhomogeneous Poisson point process
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 1, pp. 1-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the statistical solution to problems of analysis, synthesis and filtration for systems of the diffusion-discontinuous type, it is required to simulate an inhomogeneous Poisson point process. To simulate the latter, an algorithm is sometimes used based on the property of the ordinariness of the process. In this paper, a modification of this algorithm is constructed using an efficient method for modeling random variables. The statistical adequacy of the method developed was checked by solving test problems.
@article{SJVM_2022_25_1_a0,
     author = {T. A. Averina},
     title = {On one method for modeling an nonhomogeneous {Poisson} point process},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {1--17},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2022_25_1_a0/}
}
TY  - JOUR
AU  - T. A. Averina
TI  - On one method for modeling an nonhomogeneous Poisson point process
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2022
SP  - 1
EP  - 17
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2022_25_1_a0/
LA  - ru
ID  - SJVM_2022_25_1_a0
ER  - 
%0 Journal Article
%A T. A. Averina
%T On one method for modeling an nonhomogeneous Poisson point process
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2022
%P 1-17
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2022_25_1_a0/
%G ru
%F SJVM_2022_25_1_a0
T. A. Averina. On one method for modeling an nonhomogeneous Poisson point process. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 1, pp. 1-17. http://geodesic.mathdoc.fr/item/SJVM_2022_25_1_a0/

[1] Averina T. A., Rybakov K. A., “Using maximum cross section method for filtering jump-diffusion random processes”, Russ. J. of Numerical Analysis and Mathematical Modelling, 35:2 (2020), 55–67 | DOI | MR | Zbl

[2] Paraev Yu. I., Vvedenie v statisticheskuyu dinamiku protsessov upravleniya i filtratsii, Sov. radio, M., 1976

[3] Mikhailov G. A., Voitishek A. V., Chislennoe statisticheskoe modelirovanie. Metody Monte-Karlo, Akademiya, M., 2006

[4] Mikhailov G. A., “K voprosu o postroenii ekonomichnykh algoritmov modelirovaniya sluchainykh velichin”, Zhurn. vychisl. matem. i mat. fiziki, 6:6 (1966), 1134–1136 | Zbl

[5] Averina T. A., “Novye algoritmy statisticheskogo modelirovaniya neodnorodnykh puassonovskikh ansamblei”, Zhurn. vychisl. matem. i mat fiziki, 50:1 (2010), 16–23 | MR | Zbl

[6] Sobol I. M., Chislennye metody Monte-Karlo, Nauka, M., 1973

[7] Mikhailov G. A., Marchenko M. A., “Parallel realization of statistical simulation and random number generators”, Russ. J. of Numerical Analysis and Mathematical Modelling, 17:1 (2002), 113–124 | MR | Zbl

[8] Averina T. A., Rybakov K. A., “Priblizhennoe reshenie zadachi prognozirovaniya dlya stokhasticheskikh sistem diffuzionno-skachkoobraznogo tipa”, Sib. zhurn. vychisl. matematiki, 20:1 (2017), 1–13 | Zbl

[9] Ermakov S. M., Mikhailov G. A., Kurs statisticheskogo modelirovaniya, Nauka, M., 1976 | MR

[10] Prigarin S. M., Metody chislennogo modelirovaniya sluchainykh protsessov i polei, Izd-vo IVMiMG SO RAN, Novosibirsk, 2005