Numerical method for solving Volterra integral equations with oscillatory kernels using a transform
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 4, pp. 435-444.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present work, a numerical scheme is constructed for the approximation of a class of Volterra integral equations of the convolution type with highly oscillatory kernels. The proposed numerical technique transforms the Volterra integral equations of the convolution type into simple algebraic equations. By an inverse transform the problem is converted into an integral representation in the complex plane, and then computed by a suitable quadrature formula. The numerical scheme is applied for a class of linear and nonlinear Volterra integral equations of the convolution type with highly oscillatory kernels, and some of the obtained results are compared with the methods available in the literature. The main advantage of the present scheme is the transformation of a highly oscillatory problem to a non-oscillatory and simple problem. So a large class of a similar type of integral equations having kernels of a highly oscillatory type can be very effectively approximated.
@article{SJVM_2021_24_4_a7,
     author = {M. Uddin and A. Khan},
     title = {Numerical method for solving {Volterra} integral equations with oscillatory kernels using a transform},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {435--444},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2021_24_4_a7/}
}
TY  - JOUR
AU  - M. Uddin
AU  - A. Khan
TI  - Numerical method for solving Volterra integral equations with oscillatory kernels using a transform
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2021
SP  - 435
EP  - 444
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2021_24_4_a7/
LA  - ru
ID  - SJVM_2021_24_4_a7
ER  - 
%0 Journal Article
%A M. Uddin
%A A. Khan
%T Numerical method for solving Volterra integral equations with oscillatory kernels using a transform
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2021
%P 435-444
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2021_24_4_a7/
%G ru
%F SJVM_2021_24_4_a7
M. Uddin; A. Khan. Numerical method for solving Volterra integral equations with oscillatory kernels using a transform. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 4, pp. 435-444. http://geodesic.mathdoc.fr/item/SJVM_2021_24_4_a7/

[1] Ding H. J., Wang H. M., Chen W. Q., “Analytical solution for the electroelastic dynamics of a nonhomogeneous spherically isotropic piezoelectric hollow sphere”, Archive of Applied Mechanics, 73:1–2 (2003), 49–62

[2] P. Baratella, “A nystrom interpolant for some weakly singular linear Volterra integral equations”, J. of Computational and Applied Mathematics, 231:2 (2009), 725–734

[3] R. Chill, J. Pruss, “Asymptotic behaviour of linear evolutionary integral equations”, Integral Equations and Operator Theory, 39:2 (2001), 193–213

[4] Sunil Kumar, Amit Kumar, Devendra Kumar, Jagdev Singh, Arvind Singh, “Analytical solution of Abel integral equation arising in astrophysics via Laplace transform”, J. of the Egyptian Mathematical Society, 23:1 (2015), 102–107

[5] Chandler-Wilde Simon N., Graham Ivan G., Langdon Stephen, Spence Euan A., “Numerical asymptotic boundary integral methods in high-frequency acoustic scattering”, Acta Numerica, 21 (2012), 89–305

[6] H. Brunner, Collocation methods for Volterra integral and related functional differential equations, Cambridge Monographs on Applied and Computational Mathematics, 15, Cambridge University Press, 2004

[7] Kirane Mokhtar, Rogovchenko Yuri V., “On oscillation of nonlinear second order differential equation with damping term”, Applied Mathematics and Computation, 117:2–3 (2001), 177–192

[8] Davies Penny J., Duncan Dugald B., “Stability and convergence of collocation schemes for retarded potential integral equations”, SIAM J. on Numerical Analysis, 42:3 (2004), 1167–1188

[9] Brunner Hermann, Davies Penny J., Duncan Dugald B., “Discontinuous galerkin approximations for Volterra integral equations of the first kind”, IMA J. of Numerical Analysis, 29:4 (2009), 856–881

[10] Xiang Shuhuang, “Laplace transforms for approximation of highly oscillatory Volterra integral equations of the first kind”, Applied Mathematics and Computation, 232 (2014), 944–954

[11] Wang Haiyong, Xiang Shuhuang, “Asymptotic expansion and filon-type methods for a Volterra integral equation with a highly oscillatory kernel”, IMA J. of Numerical Analysis, 31:2 (2011), 469–490

[12] Almeida Ricardo, Jleli Mohamed, Samet Bessem, “A numerical study of fractional relaxation-oscillation equations involving?-caputo fractional derivative”, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matematicas, 113:3 (2019), 1873–1891

[13] Shomaila Mazhar, ul Islam Siraj, Zaman Sakhi, “On numerical computation of three dimensional highly oscillatory integrals”, Mathematical Sciences in Engineering Applications, NCMSEA-2018, 101

[14] ul Islam Siraj, Al-Fhaid A. S., Zaman Sakhi, “Meshless and wavelets based complex quadrature of highly oscillatory integrals and the integrals with stationary points”, Engineering Analysis with Boundary Elements, 37:9 (2013), 1136–1144

[15] Linz Peter, “Product integration methods for Volterra integral equations of the first kind”, BIT Numerical Mathematics, 11:4 (1971), 413–421

[16] de Hoog Frank, Weiss Richard, “On the solution of Volterra integral equations of the first kind”, Numerische Mathematik, 21:1 (1973), 22–32

[17] McAlevey L. G., “Product integration rules for Volterra integral equations of the first kind”, BIT Numerical Mathematics, 27:2 (1987), 235–247

[18] Levin David, “Fast integration of rapidly oscillatory functions”, J. of Computational and Applied Mathematics, 67:1 (1996), 95–101

[19] Iserles Arieh, Nørsett Syvert P., “On quadrature methods for highly oscillatory integrals and their implementation”, BIT Numerical Mathematics, 44:4 (2004), 755–772

[20] Branders Maria, Piessens Robert, “An extension of Clenshaw-Curtis quadrature”, J. of Computational and Applied Mathematics, 1:1 (1975), 55–65

[21] Piessens Robert, Branders Maria, “Modified Clenshaw-Curtis method for the computation of bessel function integrals”, BIT Numerical Mathematics, 23:3 (1983), 370–381

[22] Xiang Shuhuang, Gui Weihua, Mo Pinghua, “Numerical quadrature for bessel transformations”, Applied Numerical Mathematics, 58:9 (2008), 1247–1261

[23] Polyanin Andrei D., Manzhirov Alexander V., Handbook of Integral Equations, CRC press, 1998

[24] Sprossig Wolfgang, Venturino E. K., “The treatment of window problems by transform methods”, Zeitschrift fur Analysis und ihre Anwendungen, 12:4 (1993), 643–654

[25] Talbot Alan, “The accurate numerical inversion of Laplace transforms”, IMA J. of Applied Mathematics, 23:1 (1979), 97–12

[26] Sheen Dongwoo, Sloan Ian H., Thomee Vidar, “A parallel method for time discretization of parabolic equations based on Laplace transformation and quadrature”, IMA J. of Numerical Analysis, 23:2 (2003), 269–299

[27] Lopez-Fernandez M., Palencia C., “On the numerical inversion of the Laplace transform of certain holomorphic mappings”, Applied Numerical Mathematics, 51:2–3 (2004), 289–303

[28] Brunner Hermann, “On Volterra integral operators with highly oscillatory kernels”, Discret. Contin. Dyn. Syst., 34 (2014), 915–929

[29] Ma Junjie, Xiang Shuhuang, Kang Hongchao, “On the convergence rates of Filon methods for the solution of a Volterra integral equation with a highly oscillatory bessel kernel”, Applied Mathematics Letters, 26:7 (2013), 699–705

[30] Wu Qinghua, “On graded meshes for weakly singular Volterra integral equations with oscillatory trigonometric kernels”, J. of Computational and Applied Mathematics, 263 (2014), 370–376

[31] Davis Philip J., Rabinowitz Philip, Methods of Numerical Integration, Courier Corporation, 2007

[32] Obi Wilson C., “Error analysis of a Laplace transform inversion procedure”, SIAM J. on Numerical Analysis, 27:2 (1990), 457–469