Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2021_24_4_a7, author = {M. Uddin and A. Khan}, title = {Numerical method for solving {Volterra} integral equations with oscillatory kernels using a transform}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {435--444}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2021_24_4_a7/} }
TY - JOUR AU - M. Uddin AU - A. Khan TI - Numerical method for solving Volterra integral equations with oscillatory kernels using a transform JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2021 SP - 435 EP - 444 VL - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2021_24_4_a7/ LA - ru ID - SJVM_2021_24_4_a7 ER -
%0 Journal Article %A M. Uddin %A A. Khan %T Numerical method for solving Volterra integral equations with oscillatory kernels using a transform %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2021 %P 435-444 %V 24 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2021_24_4_a7/ %G ru %F SJVM_2021_24_4_a7
M. Uddin; A. Khan. Numerical method for solving Volterra integral equations with oscillatory kernels using a transform. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 4, pp. 435-444. http://geodesic.mathdoc.fr/item/SJVM_2021_24_4_a7/
[1] Ding H. J., Wang H. M., Chen W. Q., “Analytical solution for the electroelastic dynamics of a nonhomogeneous spherically isotropic piezoelectric hollow sphere”, Archive of Applied Mechanics, 73:1–2 (2003), 49–62
[2] P. Baratella, “A nystrom interpolant for some weakly singular linear Volterra integral equations”, J. of Computational and Applied Mathematics, 231:2 (2009), 725–734
[3] R. Chill, J. Pruss, “Asymptotic behaviour of linear evolutionary integral equations”, Integral Equations and Operator Theory, 39:2 (2001), 193–213
[4] Sunil Kumar, Amit Kumar, Devendra Kumar, Jagdev Singh, Arvind Singh, “Analytical solution of Abel integral equation arising in astrophysics via Laplace transform”, J. of the Egyptian Mathematical Society, 23:1 (2015), 102–107
[5] Chandler-Wilde Simon N., Graham Ivan G., Langdon Stephen, Spence Euan A., “Numerical asymptotic boundary integral methods in high-frequency acoustic scattering”, Acta Numerica, 21 (2012), 89–305
[6] H. Brunner, Collocation methods for Volterra integral and related functional differential equations, Cambridge Monographs on Applied and Computational Mathematics, 15, Cambridge University Press, 2004
[7] Kirane Mokhtar, Rogovchenko Yuri V., “On oscillation of nonlinear second order differential equation with damping term”, Applied Mathematics and Computation, 117:2–3 (2001), 177–192
[8] Davies Penny J., Duncan Dugald B., “Stability and convergence of collocation schemes for retarded potential integral equations”, SIAM J. on Numerical Analysis, 42:3 (2004), 1167–1188
[9] Brunner Hermann, Davies Penny J., Duncan Dugald B., “Discontinuous galerkin approximations for Volterra integral equations of the first kind”, IMA J. of Numerical Analysis, 29:4 (2009), 856–881
[10] Xiang Shuhuang, “Laplace transforms for approximation of highly oscillatory Volterra integral equations of the first kind”, Applied Mathematics and Computation, 232 (2014), 944–954
[11] Wang Haiyong, Xiang Shuhuang, “Asymptotic expansion and filon-type methods for a Volterra integral equation with a highly oscillatory kernel”, IMA J. of Numerical Analysis, 31:2 (2011), 469–490
[12] Almeida Ricardo, Jleli Mohamed, Samet Bessem, “A numerical study of fractional relaxation-oscillation equations involving?-caputo fractional derivative”, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matematicas, 113:3 (2019), 1873–1891
[13] Shomaila Mazhar, ul Islam Siraj, Zaman Sakhi, “On numerical computation of three dimensional highly oscillatory integrals”, Mathematical Sciences in Engineering Applications, NCMSEA-2018, 101
[14] ul Islam Siraj, Al-Fhaid A. S., Zaman Sakhi, “Meshless and wavelets based complex quadrature of highly oscillatory integrals and the integrals with stationary points”, Engineering Analysis with Boundary Elements, 37:9 (2013), 1136–1144
[15] Linz Peter, “Product integration methods for Volterra integral equations of the first kind”, BIT Numerical Mathematics, 11:4 (1971), 413–421
[16] de Hoog Frank, Weiss Richard, “On the solution of Volterra integral equations of the first kind”, Numerische Mathematik, 21:1 (1973), 22–32
[17] McAlevey L. G., “Product integration rules for Volterra integral equations of the first kind”, BIT Numerical Mathematics, 27:2 (1987), 235–247
[18] Levin David, “Fast integration of rapidly oscillatory functions”, J. of Computational and Applied Mathematics, 67:1 (1996), 95–101
[19] Iserles Arieh, Nørsett Syvert P., “On quadrature methods for highly oscillatory integrals and their implementation”, BIT Numerical Mathematics, 44:4 (2004), 755–772
[20] Branders Maria, Piessens Robert, “An extension of Clenshaw-Curtis quadrature”, J. of Computational and Applied Mathematics, 1:1 (1975), 55–65
[21] Piessens Robert, Branders Maria, “Modified Clenshaw-Curtis method for the computation of bessel function integrals”, BIT Numerical Mathematics, 23:3 (1983), 370–381
[22] Xiang Shuhuang, Gui Weihua, Mo Pinghua, “Numerical quadrature for bessel transformations”, Applied Numerical Mathematics, 58:9 (2008), 1247–1261
[23] Polyanin Andrei D., Manzhirov Alexander V., Handbook of Integral Equations, CRC press, 1998
[24] Sprossig Wolfgang, Venturino E. K., “The treatment of window problems by transform methods”, Zeitschrift fur Analysis und ihre Anwendungen, 12:4 (1993), 643–654
[25] Talbot Alan, “The accurate numerical inversion of Laplace transforms”, IMA J. of Applied Mathematics, 23:1 (1979), 97–12
[26] Sheen Dongwoo, Sloan Ian H., Thomee Vidar, “A parallel method for time discretization of parabolic equations based on Laplace transformation and quadrature”, IMA J. of Numerical Analysis, 23:2 (2003), 269–299
[27] Lopez-Fernandez M., Palencia C., “On the numerical inversion of the Laplace transform of certain holomorphic mappings”, Applied Numerical Mathematics, 51:2–3 (2004), 289–303
[28] Brunner Hermann, “On Volterra integral operators with highly oscillatory kernels”, Discret. Contin. Dyn. Syst., 34 (2014), 915–929
[29] Ma Junjie, Xiang Shuhuang, Kang Hongchao, “On the convergence rates of Filon methods for the solution of a Volterra integral equation with a highly oscillatory bessel kernel”, Applied Mathematics Letters, 26:7 (2013), 699–705
[30] Wu Qinghua, “On graded meshes for weakly singular Volterra integral equations with oscillatory trigonometric kernels”, J. of Computational and Applied Mathematics, 263 (2014), 370–376
[31] Davis Philip J., Rabinowitz Philip, Methods of Numerical Integration, Courier Corporation, 2007
[32] Obi Wilson C., “Error analysis of a Laplace transform inversion procedure”, SIAM J. on Numerical Analysis, 27:2 (1990), 457–469