About efficiency of exponential transformation method for solving stochastic problems of gamma-ray transport theory
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 4, pp. 425-434.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents the algorithm of exponential transformation (biasing) and its randomized modification with branching of a Markov chain trajectory for solving the problems of gamma-ray transport in an inhomogeneous medium. These algorithms were applied to a maximum (majorant) cross-section method or the Woodcock tracking which is extremely efficient for the simulation in an inhomogeneous medium. On an example of gamma-ray transport through a thick water slab containing a random amount of air or Al balls, the numerical study of the above algorithms in comparison with the standard simulation algorithm is performed.
@article{SJVM_2021_24_4_a6,
     author = {I. N. Medvedev},
     title = {About efficiency of exponential transformation method for solving stochastic problems of gamma-ray transport theory},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {425--434},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2021_24_4_a6/}
}
TY  - JOUR
AU  - I. N. Medvedev
TI  - About efficiency of exponential transformation method for solving stochastic problems of gamma-ray transport theory
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2021
SP  - 425
EP  - 434
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2021_24_4_a6/
LA  - ru
ID  - SJVM_2021_24_4_a6
ER  - 
%0 Journal Article
%A I. N. Medvedev
%T About efficiency of exponential transformation method for solving stochastic problems of gamma-ray transport theory
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2021
%P 425-434
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2021_24_4_a6/
%G ru
%F SJVM_2021_24_4_a6
I. N. Medvedev. About efficiency of exponential transformation method for solving stochastic problems of gamma-ray transport theory. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 4, pp. 425-434. http://geodesic.mathdoc.fr/item/SJVM_2021_24_4_a6/

[1] Belyaev Yu. K., “Puassonovskii tochechnyi protsess”, Veroyatnost i matematicheskaya statistika, Entsiklopediya, ed. Yu.V. Prokhorov, Nauchn. izd-vo BPE, M., 1999, 525–526

[2] Glazov G. N., Titov G. A., “Statisticheskie kharakteristiki koeffitsienta oslableniya v razorvannoi oblachnosti. I. Model s sharami odinakovogo radiusa”, Voprosy lazernogo zondirovaniya atmosfery, Nauka, Sib. otd-nie, Novosibirsk, 1976, 126–139

[3] Devison B., Teoriya perenosa neitronov, Atomizdat, M., 1960

[4] Ermakov S. M., Mikhailov G. A., Statisticheskoe modelirovanie, Nauka, M., 1980

[5] Marchuk G. I., Metody rascheta yadernykh reaktorov, Atomizdat, M., 1961

[6] Spane Dzh., Gelbard Z., Metod Monte-Karlo i zadachi teorii perenosa neitronov, Atomizdat, M., 1972

[7] Storm E., Israel Kh., Secheniya vzaimodeistviya gamma-izlucheniya. Spravochnik, Atomizdat, M., 1973

[8] Fano U., Spenser L., Berger M., Perenos gamma-izlucheniya, Gosatomizdat, M., 1963

[9] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1967

[10] Gupta H. C., Dwivedi S. R., “Sampling of scattering angle in deep-penetration Monte Carlo”, Annals of Nuclear Energy, 12:4 (1985), 213–216

[11] Kahn H., “Random sampling techniques in neutron attenuation problems. I”, Nucleonics, 6:5 (1950), 27–33

[12] Kahn H., “Random sampling techniques in neutron attenuation problems. II”, Nucleonics, 6:6 (1950), 60–65

[13] Marchuk G. I., Mikhailov G. A., Nazaraliev M. A., et al., The Monte Carlo Methods in Atmospheric Optics, Springer-Verlag, 1980

[14] Medvedev I. N., Mikhailov G. A., “Randomized exponential transformation algorithm for solving the stochastic problems of gamma-ray transport theory”, Russ. J. Numer. Anal. Math. Modelling, 35:3 (2020), 153–162

[15] Medvedev I. N., Mikhailov G. A., “Recurrent partial averaging in the theory of weighted Monte Carlo methods”, Russ. J. Numer. Anal. Math. Modelling, 24:3 (2009), 261–277

[16] Mikhailov G. A., Optimization of Weighted Monte Carlo Methods, Springer-Verlag, 1992

[17] Murthy K. P.N., “Exponential biasing-an update”, Proc. National conference on radiation shielding and protection, RASP-96, eds. L.V. Krishnan, S.M. Lee, O.P. Singh, Allied Publishers Limited, India, New Delhi, 1996, 70–77

[18] Spanier J., “A new multistage procedure for systematic variance reduction in Monte Carlo”, SIAM J. on Numerical Analysis, 8:3 (1971), 548–554

[19] Taro Ueki, Larsen E. W., “A kinetic theory for nonanalog Monte Carlo particle transport algorithms: exponential transform with angular biasing in planar-geometry anisotropically scattering media”, J. of Computational Physics, 145:1 (1998), 406–431

[20] Woodcock E., Murphy T., Hemmings P., Longworth S., “Techniques Used in the GEM Code for Monte Carlo Neutronics Calculations in Reactors and Other Systems of Complex Geometry”, Proc. Conf. Applications of Computing Methods to Reactor Problems, Argonne National Lab, ILL, 1965